設(shè)函數(shù).

(Ⅰ)當(dāng)x=6時(shí),求的展開式中二項(xiàng)式系數(shù)最大的項(xiàng);

(Ⅱ)對(duì)任意的實(shí)數(shù)x,證明

(Ⅲ)是否存在,使得an<恒成立?若存在,試證明你的結(jié)論并求出a的值;若不存在,請(qǐng)說(shuō)明理由.

本題考察函數(shù)、不等式、導(dǎo)數(shù)、二項(xiàng)式定理、組合數(shù)計(jì)算公式等內(nèi)容和數(shù)學(xué)思想方法?疾榫C合推理論證與分析解決問(wèn)題的能力及創(chuàng)新意識(shí)。

(Ⅰ)解:展開式中二項(xiàng)式系數(shù)最大的項(xiàng)是第4項(xiàng),這項(xiàng)是

(Ⅱ)證法一:因

f’(x)恒成立。

證法二:

故只需對(duì)進(jìn)行比較。

,有

,得

因?yàn)楫?dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增,所以在有極小值

故當(dāng)時(shí),,

從而有,亦即

故有恒成立。

所以

,原不等式成立。

(Ⅲ)對(duì),且

又因,故

,從而有成立,

即存在,使得恒成立。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣西大學(xué)附中高一(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知f(x)=2x-1的反函數(shù)為f-1(x),g(x)=log4(3x+1).
(1)若f-1(x)≤g(x),求x的取值范圍D.
(2)設(shè)函數(shù),當(dāng)x∈D時(shí),求函數(shù)H(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年黑龍江省大慶市鐵人中學(xué)高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知f(x)=2x-1的反函數(shù)為f-1(x),g(x)=log4(3x+1).
(1)若f-1(x)≤g(x),求x的取值范圍D.
(2)設(shè)函數(shù),當(dāng)x∈D時(shí),求函數(shù)H(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年黑龍江省大慶市鐵人中學(xué)高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知f(x)=2x-1的反函數(shù)為f-1(x),g(x)=log4(3x+1).
(1)若f-1(x)≤g(x),求x的取值范圍D.
(2)設(shè)函數(shù),當(dāng)x∈D時(shí),求函數(shù)H(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年重慶市西南師大附中高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知f(x)=2x-1的反函數(shù)為f-1(x),g(x)=log4(3x+1).
(1)若f-1(x)≤g(x),求x的取值范圍D.
(2)設(shè)函數(shù),當(dāng)x∈D時(shí),求函數(shù)H(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(陜西卷解析版) 題型:選擇題

設(shè)函數(shù) , 則當(dāng)x>0時(shí), 表達(dá)式的展開式中常數(shù)項(xiàng)為 (    )

A.-20             B.20               C.-15             D.15

 

查看答案和解析>>

同步練習(xí)冊(cè)答案