【題目】某公司研發(fā)出一款產(chǎn)品,批量生產(chǎn)前先在某城市銷售30天進行市場調(diào)查.調(diào)查結(jié)果發(fā)現(xiàn):日銷量與天數(shù)的對應(yīng)關(guān)系服從圖①所示的函數(shù)關(guān)系:每件產(chǎn)品的銷售利潤與天數(shù)的對應(yīng)關(guān)系服從圖②所示的函數(shù)關(guān)系.圖①由拋物線的一部分(為拋物線頂點)和線段組成.
(Ⅰ)設(shè)該產(chǎn)品的日銷售利潤 ,分別求出, , 的解析式,
(Ⅱ)若在30天的銷售中,日銷售利潤至少有一天超過8500元,則可以投入批量生產(chǎn),該產(chǎn)品是否可以投入批量生產(chǎn),請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, 分別為等差數(shù)列和等比數(shù)列, , 的前項和為.函數(shù)的導(dǎo)函數(shù)是,有,且是函數(shù)的零點.
(1)求的值;
(2)若數(shù)列公差為,且點,當(dāng)時所有點都在指數(shù)函數(shù)的圖象上.
請你求出解析式,并證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={f(x)|f2(x)﹣f2(y)=f(x+y)f(x﹣y),x,y∈R},有下列命題
①若f(x)= ,則f(x)∈M;
②若f(x)=2x,則f(x)∈M;
③f(x)∈M,則y=f(x)的圖象關(guān)于原點對稱;
④f(x)∈M,則對于任意實數(shù)x1 , x2(x1≠x2),總有 <0成立;
其中所有正確命題的序號是 . (寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列和的通項公式分別為,將集合
中的元素從小到大依次排列,構(gòu)成數(shù)列;將集合
中的元素從小到大依次排列,構(gòu)成數(shù)列.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的通項公式;
(3)設(shè)數(shù)列的前項和為,求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 是定義在(﹣∞,+∞)上的奇函數(shù),且滿足
(1)求實數(shù)a,b,并確定函數(shù)f(x)的解析式
(2)用定義證明f(x)在(﹣1,1)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合 A={x|2<x<4},B={a<x<3a}.
(1)若A∩B≠,求實數(shù)a的范圍.
(2)若A∪B={x|2<x<6},求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C的中心為原點O,F(xiàn)(﹣2 ,0)為C的左焦點,P為C上一點,滿足|OP|=|OF|且|PF|=4,則橢圓C的方程為( )
A. =1
B. =1
C. =1
D. =1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時,f(x)=x2+2x.現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,根據(jù)圖象:
(1)寫出函數(shù)f(x),x∈R的增區(qū)間并將圖象補充完整;
(2)寫出函數(shù)f(x),x∈R的解析式;
(3)若函數(shù)g(x)=f(x)﹣4ax+2,x∈[1,3],求函數(shù)g(x)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com