過雙曲線
x2
4
-
y2
5
=1
的右焦點F且與x軸垂直的直線與雙曲線交于A,B兩點,拋物線y2=2px過A,B兩點,則p等于(  )
分析:根據(jù)雙曲線的標(biāo)準(zhǔn)方程,求出其右焦點坐標(biāo),進(jìn)而求出A,B兩點的坐標(biāo),代入拋物線y2=2px可得答案.
解答:解:雙曲線
x2
4
-
y2
5
=1
的右焦點F坐標(biāo)為(3,0)
故A,B兩點坐標(biāo)為(3,±
5
2

又∵拋物線y2=2px過A,B兩點,
25
4
=2p×3
故p=
25
24

故選B
點評:本題考查的知識點是雙曲線的簡單性質(zhì),拋物線的簡單性質(zhì),熟練掌握圓錐曲線的簡單性質(zhì)是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過點M(3,-1)且被點M平分的雙曲線
x24
-y2=1
的弦所在直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列是有關(guān)直線與圓錐曲線的命題:
①過點(2,4)作直線與拋物線y2=8x有且只有一個公共點,這樣的直線有2條;
②過拋物線y2=4x的焦點作一條直線與拋物線相交于A,B兩點,它們的橫坐標(biāo)之和等于5,則這樣的直線有且僅有兩條;
③過點(3,1)作直線與雙曲線
x2
4
-y2=1
有且只有一個公共點,這樣的直線有3條;
④過雙曲線x2-
y2
2
=1
的右焦點作直線l交雙曲線于A,B兩點,若|AB|=4,則滿足條件的直線l有3條;
⑤已知雙曲線x2-
y2
2
=1
和點A(1,1),過點A能作一條直線l,使它與雙曲線交于P,Q兩點,且點A恰為線段PQ的中點.
其中說法正確的序號有
①②④
①②④
.(請寫出所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
4
-y2=1的虛軸的上端點為B,過點B引直線l與雙曲線的左支有兩個不同的公共點,則直線l的斜率的取值范圍是
1
2
,
2
2
1
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點A(2,-1)且被A平分的雙曲線
x2
4
-y2=1
的弦所在的直線的方程為(  )

查看答案和解析>>

同步練習(xí)冊答案