精英家教網 > 高中數學 > 題目詳情

【題目】設函數f(x)是定義在R上的偶函數,且對任意的x∈R,都有f(x+1)=f(x﹣1),已知當x∈[0,1]時,f(x)=2x1 , 有以下結論:
①2是函數f(x)的一個周期;
②函數f(x)在(1,2)上單調遞減,在(2,3)上單調遞增;
③函數f(x)的最大值為1,最小值為0;
④當x∈(3,4)時,f(x)=23x
其中,正確結論的序號是 . (請寫出所有正確結論的序號)

【答案】①②④
【解析】解:①∵對任意的x∈R恒有f(x+1)=﹣f(x),
∴f(x+2)=﹣f(x+1)=f(x),即2是f(x)的周期,①正確
②∵函數f(x)是定義在R上的偶函數,當x∈[0,1]時,f(x)=( )1﹣x,
∴函數f(x)在(0,1)上是增函數,函數f(x)在(1,2)上是減函數,在(2,3)上是增函數,故②正確;
函數f(x)的最大值是f(1)=1,最小值為f(0)= ,故③不正確;
設x∈[3,4],則4﹣x∈[0,1],f(4﹣x)=( )x﹣3=f(﹣x)=f(x),故④正確.
所以答案是:①②④.
【考點精析】解答此題的關鍵在于理解函數奇偶性的性質的相關知識,掌握在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設數列{an}的前n項和為Sn.已知2Sn3n3.

(1)求{an}的通項公式;

(2)若數列{bn}滿足anbnlog3an,求{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,底面為正三角形,側棱底面.已知 的中點,

(1)求證:平面平面;

(2)求證:A1C∥平面

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中, 底面,D是PC的中點,已知,AB=2,AC=,PA=2.

(1)求三棱錐P-ABC的體積

(2)求異面直線BC與AD所成角的余弦值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ln(x+1)﹣ax,a∈R.
(1)求函數f(x)的單調區(qū)間;
(2)當x>1時,f(x﹣1)≤ 恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在用“五點法”畫函數f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一周期內的圖象時,列表并填入了部分數據,如下表:

ωx+φ

0

π

x

π

Asin(ωx+φ)

0

3

﹣3

0


(1)請將上表空格中處所缺的數據填寫在答題卡的相應位置上,并直接寫出函數f(x)的解析式;
(2)將y=f(x)圖象上所有點的橫坐標縮短為原來的 ,再將所得圖象向左平移 個單位,得到y(tǒng)=g(x)的圖象,求g(x)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】十九大提出,堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結合,幫助貧困村種植蜜柚,并利用電商進行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機摘下了100個蜜柚進行測重,其質量分別在, , , , , (單位:克)中,其頻率分布直方圖如圖所示.

(1)求質量落在, 兩組內的蜜柚的抽取個數,

(2)從質量落在, 內的蜜柚中隨機抽取2個,求這2個蜜柚質量均小于2000克的概率;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題中是真命題的個數是( )

(1)垂直于同一條直線的兩條直線互相平行

(2)與同一個平面夾角相等的兩條直線互相平行

(3)平行于同一個平面的兩條直線互相平行

(4)兩條直線能確定一個平面

(5)垂直于同一個平面的兩個平面平行

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,三棱臺 中,,分別為AC,CB的中點.

(1)求證:平面;

(2)若,,求證:平面 平面.

查看答案和解析>>

同步練習冊答案