(2012•四川)已知a為正實(shí)數(shù),n為自然數(shù),拋物線y=-x2+
an
2
與x軸正半軸相交于點(diǎn)A,設(shè)f(n)為該拋物線在點(diǎn)A處的切線在y軸上的截距.
(Ⅰ)用a和n表示f(n);
(Ⅱ)求對(duì)所有n都有
f(n)-1
f(n)+1
n
n+1
成立的a的最小值;
(Ⅲ)當(dāng)0<a<1時(shí),比較
1
f(1)-f(2)
+
1
f(2)-f(4)
+…+
1
f(n)-f(2n)
6•
f(1)-f(n+1)
f(0)-f(1)
的大小,并說(shuō)明理由.
分析:(Ⅰ)根據(jù)拋物線y=-x2+
an
2
與x軸正半軸相交于點(diǎn)A,可得A(
an
2
,0
),進(jìn)一步可求拋物線在點(diǎn)A處的切線方程,從而可得f(n);
(Ⅱ)由(Ⅰ)知f(n)=an,則
f(n)-1
f(n)+1
n
n+1
成立的充要條件是an≥2n+1,即知,an≥2n+1對(duì)所有n成立,當(dāng)a=3,n≥1時(shí),an=3n=(1+2)n≥1+2
C
1
n
=2n+1,當(dāng)n=0時(shí),an=2n+1,由此可得a的最小值;
(Ⅲ)由(Ⅰ)知f(k)=ak,證明當(dāng)0<x<1時(shí),
1
x-x2
>6x
,即可證明:
1
f(1)-f(2)
+
1
f(2)-f(4)
+…+
1
f(n)-f(2n)
6•
f(1)-f(n+1)
f(0)-f(1)
解答:解:(Ⅰ)∵拋物線y=-x2+
an
2
與x軸正半軸相交于點(diǎn)A,∴A(
an
2
,0

對(duì)y=-x2+
an
2
求導(dǎo)得y′=-2x
∴拋物線在點(diǎn)A處的切線方程為y=-
2an
(x-
an
2
)
,∴y=-
2an
x+an

∵f(n)為該拋物線在點(diǎn)A處的切線在y軸上的截距,∴f(n)=an;
(Ⅱ)由(Ⅰ)知f(n)=an,則
f(n)-1
f(n)+1
n
n+1
成立的充要條件是an≥2n+1
即知,an≥2n+1對(duì)所有n成立,特別的,取n=1得到a≥3
當(dāng)a=3,n≥1時(shí),an=3n=(1+2)n≥1+2
C
1
n
=2n+1
當(dāng)n=0時(shí),an=2n+1
∴a=3時(shí),對(duì)所有n都有
f(n)-1
f(n)+1
n
n+1
成立
∴a的最小值為3;
(Ⅲ)由(Ⅰ)知f(k)=ak,下面證明:
1
f(1)-f(2)
+
1
f(2)-f(4)
+…+
1
f(n)-f(2n)
6•
f(1)-f(n+1)
f(0)-f(1)

首先證明:當(dāng)0<x<1時(shí),
1
x-x2
>6x

設(shè)函數(shù)g(x)=6x(x2-x)+1,0<x<1,則g′(x)=18x(x-
2
3

當(dāng)0<x<
2
3
時(shí),g′(x)<0;當(dāng)
2
3
< x<1
時(shí),g′(x)>0
故函數(shù)g(x)在區(qū)間(0,1)上的最小值g(x)min=g(
2
3
)=
1
9
>0
∴當(dāng)0<x<1時(shí),g(x)>0,∴
1
x-x2
>6x

由0<a<1知0<ak<1,因此
1
ak-a2k
> 6ak
,
從而
1
f(1)-f(2)
+
1
f(2)-f(4)
+…+
1
f(n)-f(2n)
=
1
a-a2
+
1
a2-a4
+…+
1
an-a2n

>6(a+a2+…+an)=
a-an+1
1-a
=6•
f(1)-f(n+1)
f(0)-f(1)
點(diǎn)評(píng):本題考查圓錐曲線的綜合,考查不等式的證明,考查導(dǎo)數(shù)的幾何意義,綜合性強(qiáng),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•四川)已知函數(shù)f(x)=cos2
x
2
-sin
x
2
cos
x
2
-
1
2

(Ⅰ)求函數(shù)f(x)的最小正周期和值域;
(Ⅱ)若f(α)=
3
2
10
,求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•四川)某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗A原料1千克、B原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗A原料2千克,B原料1千克.每桶甲產(chǎn)品的利潤(rùn)是300元,每桶乙產(chǎn)品的利潤(rùn)是400元.公司在生產(chǎn)這兩種產(chǎn)品的計(jì)劃中,要求每天消耗A、B原料都不超過(guò)12千克.通過(guò)合理安排生產(chǎn)計(jì)劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤(rùn)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•四川)已知拋物線關(guān)于x軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn)O,并且經(jīng)過(guò)點(diǎn)M(2,y0).若點(diǎn)M到該拋物線焦點(diǎn)的距離為3,則|OM|=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•四川)已知a為正實(shí)數(shù),n為自然數(shù),拋物線y=-x2+
an
2
與x軸正半軸相交于點(diǎn)A,設(shè)f(n)為該拋物線在點(diǎn)A處的切線在y軸上的截距.
(Ⅰ)用a和n表示f(n);
(Ⅱ)求對(duì)所有n都有
f(n)-1
f(n)+1
n3
n3+1
成立的a的最小值;
(Ⅲ)當(dāng)0<a<1時(shí),比較
n
k=1
1
f(k)-f(2k)
27
4
f(1)-f(n)
f(0)-f(1)
的大小,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案