已知函數(shù)f(x)=
2-(
1
3
)x,x≤0
1
2
x2-x+1,x>0

(1)當x≤0時,解不等式f(x)≥-1;
(2)寫出該函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)g(x)=f(x)-m恰有3個不同零點,求實數(shù)m的取值范圍.
考點:分段函數(shù)的應用,其他不等式的解法
專題:計算題,數(shù)形結合,函數(shù)的性質及應用
分析:(1)由x≤0時的函數(shù)表達式,通過指數(shù)函數(shù)的單調(diào)性解出不等式即可;
(2)畫出函數(shù)f(x)的圖象,通過圖象觀察即可;
(3)作出直線y=m,函數(shù)g(x)=f(x)-m恰有3個不同零點等價于函數(shù)y=m與函數(shù)f(x)的圖象恰有三個不同公共點.由圖象觀察即可得到.
解答: 解:(1)當x≤0時,f(x)=2-(
1
3
)x≥-1

解得x≥-1,
綜上,-1≤x≤0,
故解集為[-1,0];
(2)函數(shù)f(x)的圖象如右圖,
函數(shù)f(x)的單調(diào)遞減區(qū)間是(0,1),
單調(diào)增區(qū)間是(-∞,0)及(1,+∞);
(3)作出直線y=m,
函數(shù)g(x)=f(x)-m恰有3個不同零點等價于
函數(shù)y=m與函數(shù)f(x)的圖象恰有三個不同公共點.
由函數(shù)f(x)=
2-(
1
3
)x,x≤0
1
2
x2-x+1,x>0

又f(0)=1,f(1)=
1
2

m∈(
1
2
,1)
點評:本題考查分段函數(shù)的運用,考查函數(shù)的單調(diào)性,以及函數(shù)的圖象交點個數(shù),注意運用數(shù)形結合的思想方法,是迅速解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某市規(guī)定出租車收費標準:起步價(不超過2km)為5元,超過2km時,前2km依然按5元收費,超過2km的部分,每千米收1.5元.
(1)寫出打車費用關于路程的函數(shù)解析式;
(2)規(guī)定:若遇堵車,每等待5分鐘(不足5分鐘按5分鐘計時),乘客需交費1元,.某乘客打車共行了20km,中途遇到了兩次堵車,第一次等待7分鐘,第二次等待13分鐘,該乘客到達目的地時,該付多少車費?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+
2a
x
,a∈R.
(Ⅰ)若函數(shù)f(x)在x=1處取得極值,求a的值;
(Ⅱ)若函數(shù)f(x)的圖象上的點都在直線y=2的上方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,PA⊥平面ABCD,四邊形ABCD是矩形,PA=AD=a,M、N分別是AB、PC的中點.
(Ⅰ)求證:MN∥平面PAD;
(Ⅱ)求平面PCD與平面ABCD所成二面角的大;
(Ⅲ)求證:平面MND⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an},其前n項和為Sn,等比數(shù)列{bn}的各項均為正數(shù),公比是q,且滿足:a1=3,b1=1,b2+S2=12,S2=b2q.
(Ⅰ)求an與bn;
(Ⅱ)設cn=3bn-λ•2
an
3
,(λ∈R),若數(shù)列{cn}是遞增數(shù)列,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+x2+ax,a∈R.
(1)若函數(shù)f(x)在其定義域上為增函數(shù),求a的取值范圍;
(2)當a=1時,函數(shù)g(x)=
f(x)
x+1
-x在區(qū)間[t,+∞)(t∈N*)上存在極值,求t的最大值.
(參考數(shù)值:自然對數(shù)的底數(shù)e≈2.71828)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a(x-2)(x-
a-1
a
),其中a≠0.
(Ⅰ)若a=1,求f(x)在區(qū)間[0,3]上的最大值和最小值;
(Ⅱ)解關于x的不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期和最大值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文科)已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),設f(x)=2
a
b
+m+1(m∈R)
(1)求函數(shù)f(x)在x∈[0,π]上的單調(diào)遞增區(qū)間;
(2)當x∈[0,
π
6
]時,-4<f(x)<4恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案