雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點為F,焦距是2c,左頂點是A,虛軸的上端點是B(0,b),若
BA
BF
=3ac,求該雙曲線的離心率.
考點:雙曲線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:利用向量的數(shù)量積公式,可得ac+b2=3ac,即c2-a2-2ac=0,可得e2-2e-1=0,由此可求雙曲線的離心率.
解答: 解:由題意,A(-a,0),F(xiàn)(-c,0),則
BA
BF
=3ac,
∴(-a,-b)•(-c,-b)=3ac,
∴ac+b2=3ac,
∴c2-a2-2ac=0,
∴e2-2e-1=0,
∵e>1,
∴e=1+
2
點評:本題考查向量的數(shù)量積公式,考查雙曲線的離心率,考查學生的計算能力,確定a,c之間是關系是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

根據(jù)下列關系,求各個數(shù)列{an}的通項公式:
(1)a1=4,an+1=
n+1
n+3
 
an;
(2)a1=2,an-1-an=2anan-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,過其右焦點F與長軸垂直的弦長為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的左,右頂點分別為A,B,點P是直線x=1上的動點,直線PA與橢圓的另一交點為M,直線PB與橢圓的另一交點為N,求證:直線MN經(jīng)過一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)甲種產(chǎn)品1t,需礦石4t,煤3t,生產(chǎn)乙種產(chǎn)品1t,需礦石5t,煤10t,每1t甲種產(chǎn)品的利潤是7萬元,每1t乙種產(chǎn)品的利潤是12萬元,工廠在生產(chǎn)這兩種產(chǎn)品的計劃中,要求消耗礦石不超過200t,煤不超過300t,則甲、乙兩種產(chǎn)品應各生產(chǎn)多少,能使利潤總額達到最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設實數(shù)a、b使方程x4+ax3+bx2+ax+1=0,求a2+b2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的公差為d,且a1,d∈N*.若設M1是從a1開始的前t1項數(shù)列的和,即M1=a1+…+a t 1(1≤t1,t1∈N*),M2=at1+1+at1+2+…+at2(1<t2∈N*),如此下去,其中數(shù)列{Mi}是從第ti-1+1(t0=0)開始到第ti(1<ti)項為止的數(shù)列的和,即Mi=ati-1+1+…+ati(1≤ti,ti∈N*).
(1)若數(shù)列an=n(1≤n≤13,n∈N*),試找出一組滿足條件的M1,M2,M3,使得:M22=M1M3;
(2)試證明對于數(shù)列an=n(n∈N*),一定可通過適當?shù)膭澐,使所得的?shù)列{Mn}中的各數(shù)都為平方數(shù);
(3)若等差數(shù)列{an}中a1=1,d=2.試探索該數(shù)列中是否存在無窮整數(shù)數(shù)列{tn},(1≤t1<t2<t3<…<tn),n∈N*,使得{Mn}為等比數(shù)列,如存在,就求出數(shù)列{Mn};如不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x
1
3
-x-
1
3
5
,g(x)=
x
1
3
+x-
1
3
5

(1)證明:f(x)為奇函數(shù),并求f(x)的單調區(qū)間;
(2)分別計算f(4)-5f(2)g(2)和f(9)-5f(3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,△PAD是邊長為2的正三角形,四邊形ABCD為菱形,且∠DAB=60°,PC=
10

(1)求PC與面ABCD所成角的正弦值;
(2)求二面角P-BC-A的平面角的大。
(3)平面PBC與平面PAD交于直線l,畫出直線l,并判斷直線l與直線BC的關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用適當?shù)姆柼羁?br />(1)a
 
{a,b,c};
(2)0
 
{x|x2=0};
(3)∅
 
{x∈R|x2+1=0};
(4){0,1}
 
N;
(5){0}
 
{x|x2=x};
(6){2,1}
 
{x|x2-3x+2=0}.

查看答案和解析>>

同步練習冊答案