已知向量
a
,
b
滿足|2
a
+3
b
|=1,則
a
b
最大值為
 
考點:平面向量數(shù)量積的坐標(biāo)表示、模、夾角
專題:平面向量及應(yīng)用
分析:利用
a
b
=
(2
a
+3
b
)2
24
-
(2
a
-3
b
)2
24
即可得出.
解答: 解:∵
a
b
=
(2
a
+3
b
)
2
24
-
(2
a
-3
b
)
2
24
=
1
24
-
(2
a
-3
b
)
2
24
1
24
,
當(dāng)且僅當(dāng)2
a
=3
b
,且|
a
|=
1
4
時,上式等號成立.
a
b
最大值為
1
24

故答案為:
1
24
點評:本題考查了數(shù)量積運算及其性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

證明:1•3•5•…•
2n-1
2•4•6•…•2n
2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知x2+(y+2)2=4與坐標(biāo)軸相交于O、A兩點(O為坐標(biāo)原點),另有拋物線y=ax2(a>0).
(Ⅰ)若拋物線上存在點B,直線BC切園于點C,四邊形OACB是平行四邊形,求拋物線的方程;
(Ⅱ)過點A作拋物線的切線,切點為P,直線AP與園相交于另一點Q,求
|AQ|
|QP|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求和:
C
0
n-m
+
C
1
n-m+1
+…+
C
m
n
(n>m)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A={x|x2+3x-4=0},B={x|x2+ax+1=0},若B⊆A,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個算法(如圖),則輸出結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形OABC內(nèi)的陰影部分由曲線f(x)=sinx及直線x=a(a∈(0,2π)與x軸圍成.向矩形OABC內(nèi)隨機擲一點,該點落在陰影部分的概率為
1
2
,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x=3k+1,k∈Z},B={x|x=6k-2,k∈Z},則A
 
B.(填“?”、“?”或“=”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(α+β)=
2
5
,tanβ=
1
3
,則tan(α+
π
4
)的值為
 

查看答案和解析>>

同步練習(xí)冊答案