14.已知f(x)=x3-ax2-3x,其中a∈R.
(1)當(dāng)a=4時(shí),求f(x)在[-1,1]上的最大值;
(2)若f(x)在[1,+∞)上存在單調(diào)遞減區(qū)間,求a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值即可;
(2)求出函數(shù)的導(dǎo)數(shù),根據(jù)二次函數(shù)的性質(zhì)求出a的范圍即可.

解答 解:(1)f(x)=x3-4x2-3x,f′(x)=3x2-8x-3=(3x+1)(x-3),
∴f(x)在(-1,-$\frac{1}{3}$)上單調(diào)遞增,在(-$\frac{1}{3}$,1)上單調(diào)遞減,
∴f(x)max=f(-$\frac{1}{3}$)=$\frac{14}{27}$;
(2)f′(x)=3x2-2ax-3,
∵f(x)在[1,+∞)上存在單調(diào)遞減區(qū)間
∴①f′(1)<0,解得:a>0,
②$\left\{\begin{array}{l}{f′(1)≥0}\\{{x}_{0}=\frac{a}{3}>1}\end{array}\right.$,無解,
綜上:a>0.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及二次函數(shù)的性質(zhì),是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知cosθ=$\frac{1}{3}$,θ∈(0,π),則cos($\frac{π}{2}$+2θ)的值為( 。
A.$\frac{4\sqrt{2}}{9}$B.-$\frac{7}{9}$C.-$\frac{4\sqrt{2}}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an},an=2an-1+3,a1=-1
(1)設(shè)bn=an+3,求證:{bn}為等比數(shù)列;
(2)求{$\frac{1}{lo{g}_{2}_{n}lo{g}_{2}_{n+1}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=ax3+bx2+cx+d的圖象與x軸有三個(gè)不同交點(diǎn)(0,0),(x1,0),(x2,0),且f(x)在x=1,x=2時(shí)取得極值,則x1•x2的值為( 。
A.4B.5C.6D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x2-ax-aln(x-1)(a∈R).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a∈R時(shí),求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)f(x)是定義在R上的函數(shù),其導(dǎo)函數(shù)為f′(x),若f(x)-f′(x)<1,f(0)=2016,則不等式f(x)>2015ex+1的解集為( 。
A.(-∞,0)∪(0,+∞)B.(0,+∞)C.(2015,+∞)D.(-∞,0)∪(2015,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在六面體中ABCD-A1B1C1D1,四邊形ABCD是邊長(zhǎng)為2的正方形,四邊形A1B1C1D1是邊長(zhǎng)為1的正方形,DD1⊥平面A1B1C1D1,DD1⊥平面ABCD,DD1=2.
(1)求證:A1C1與AC共面,B1D1與BD共面.
(2)求二面角A-BB1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1=$\sqrt{2}$.
(1)證明:A1C⊥平面BB1D1D;
(2)求平面C-OB1-B二面角θ的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知O為△ABC的外心,AB=3,AC=4,$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,且2x+y=1(x,y≠0),則cos∠BAC=(  )
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案