對于函數(shù),若存在x0∈R,使方程成立,則稱x0的不動點,已知函數(shù)a≠0).
(1)當(dāng)時,求函數(shù)的不動點;
(2)若對任意實數(shù)b,函數(shù)恒有兩個相異的不動點,求a的取值范圍;

(1) 1為的不動點(2)

解析試題分析:解:(1)由題得:,因為為不動點,
因此有,即       2分
所以,即3和-1為的不動點。        5分
(2)因為恒有兩個不動點,
∴ ,
即 (※)恒有兩個不等實數(shù)根,    8分
由題設(shè)恒成立,    10分
即對于任意b∈R,有恒成立,
所以有 ,    12分
 ∴         13分
考點:本題考查的重點是函數(shù)與方程的綜合運用,主要是考查了函數(shù)的零點的變形運用問題,屬于基礎(chǔ)題?疾橥瑢W(xué)們的等價轉(zhuǎn)換能力和分析問題解決問題的能力。
點評:解題的關(guān)鍵是對新定義的理解,建立方程,將不動點的問題,轉(zhuǎn)化為結(jié)合一元二次方程中必然有兩個不等的實數(shù)根來求解參數(shù)的取值范圍。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
設(shè)函數(shù)的導(dǎo)函數(shù)為,且。
(Ⅰ)求函數(shù)的圖象在x=0處的切線方程;
(Ⅱ)求函數(shù)的極值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)).
(1)若的定義域和值域均是,求實數(shù)的值;
(2)若對任意的,,總有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)
(1)求的表達式,并判斷的奇偶性;
(2)試證明:函數(shù)的圖象上任意兩點的連線的斜率大于0;
(3)對于,當(dāng)時,恒有求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=ax-(a+1)ln(x+1),其中a>0.
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x>0時,證明不等式:<ln(x+1)<x;
(3)設(shè)f(x)的最小值為g(a),證明不等式:-1<ag(a)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分10分)
已知函數(shù)是定義在R上的偶函數(shù),當(dāng)時,.

(1)畫出函數(shù)的圖象(在如圖的坐標(biāo)系中),并求出時,的解析式;
(2)根據(jù)圖象寫出的單調(diào)區(qū)間及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分,第1小題6分,第2小題8分)
已知函數(shù),其中常數(shù)a > 0.
(1) 當(dāng)a = 4時,證明函數(shù)f(x)在上是減函數(shù);
(2) 求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(11分)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為組成數(shù)對(,并構(gòu)成函數(shù)
(Ⅰ)寫出所有可能的數(shù)對(,并計算,且的概率;
(Ⅱ)求函數(shù)在區(qū)間[上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù)為奇函數(shù),為常數(shù),
(1)求實數(shù)的值;
(2)證明:函數(shù)在區(qū)間上單調(diào)遞增;
(3)若對于區(qū)間上的每一個值,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案