已知函數(shù),,其中為常數(shù), ,函數(shù)的圖象與坐標軸交點處的切線為,函數(shù)的圖象與直線交點處的切線為,且。
(Ⅰ)若對任意的,不等式成立,求實數(shù)的取值范圍.
(Ⅱ)對于函數(shù)公共定義域內(nèi)的任意實數(shù)。我們把 的值稱為兩函數(shù)在處的偏差。求證:函數(shù)在其公共定義域的所有偏差都大于2.
(Ⅰ);(Ⅱ)詳見解析.

試題分析:(Ⅰ)利用參數(shù)分離法將不等式問題轉(zhuǎn)化為,等價轉(zhuǎn)化為處理,于是問題的核心就是求函數(shù),利用導數(shù)求解,但同時需要注意題中的隱含條件將的值確定下來;(Ⅱ)先確定函數(shù)與函數(shù)的解析式,然后引入函數(shù),通過證明,進而得到
,得到,于是就說明原結(jié)論成立.
試題解析:解(Ⅰ)函數(shù)的圖象與坐標軸的交點為
  
函數(shù)的圖象與直線的交點為,
 
由題意可知,
,所以               3分
不等式可化為

,則,

時,,,
,上是減函數(shù)
上是減函數(shù)
因此,在對任意的,不等式成立,
只需
所以實數(shù)的取值范圍是               8分
(Ⅱ)證明:的公共定義域為,由(Ⅰ)可知,

,則,
上是增函數(shù)
,即            ①
,則
時,;當時,,
有最大值,因此    ②
由①②得,即
又由①得
由②得


故函數(shù)在其公共定義域的所有偏差都大于2              13分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)在區(qū)間(2,3)上有零點,則=        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)上的單調(diào)增函數(shù)且為奇函數(shù),數(shù)列是等差數(shù)列,,則的值(   )
A.恒為正數(shù)B.恒為負數(shù)
C.恒為0D.可以為正數(shù)也可以為負數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)對任意的都有,且,則(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于函數(shù),若,則稱為函數(shù)的“不動點”;若,則稱為函數(shù)的“穩(wěn)定點”.如果函數(shù)的“穩(wěn)定點”恰是它的“不動點”,那么實數(shù)的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在平面直角坐標系中,橫坐標和縱坐標均為整數(shù)的點稱為格點,如果函數(shù)的圖象恰好通過個格點,則稱函數(shù)階格點函數(shù). 給出下列4個函數(shù):
;②;③;④.
其中是一階格點函數(shù)的是   (  )
A.①③B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),其中常數(shù)a > 0.
(1) 當a = 4時,證明函數(shù)f(x)在上是減函數(shù);
(2) 求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設定義在上的函數(shù),滿足當時, ,且對任意,有,
(1)解不等式
(2)解方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ) 若直線y=kx+1與f (x)的反函數(shù)的圖像相切, 求實數(shù)k的值;
(Ⅱ) 設x>0, 討論曲線y=f (x) 與曲線 公共點的個數(shù).
(Ⅲ) 設a<b, 比較的大小, 并說明理由.   

查看答案和解析>>

同步練習冊答案