【題目】如圖,點(diǎn)在拋物線外,過點(diǎn)作拋物線的兩切線,設(shè)兩切點(diǎn)分別為,,記線段的中點(diǎn)為.
(Ⅰ)求切線,的方程;
(Ⅱ)證明:線段的中點(diǎn)在拋物線上;
(Ⅲ)設(shè)點(diǎn)為圓上的點(diǎn),當(dāng)取最大值時,求點(diǎn)的縱坐標(biāo).
【答案】(Ⅰ)切線的方程為,切線的方程為.
(Ⅱ)見證明;(Ⅲ)
【解析】
(Ⅰ)結(jié)合導(dǎo)數(shù)的幾何意義可得切線,的方程;(Ⅱ)由(1)可得,,故,.再結(jié)合M點(diǎn)的坐標(biāo)即可明確在拋物線上;(Ⅲ)由題意可得. 設(shè),則.結(jié)合均值不等式即可得到結(jié)果.
(Ⅰ)切線的方程為,即,
同理可得,切線的方程為.
(另解:設(shè)切線的方程為:
由消去后可得:
∴
∴切線的方程為,即,
同理可得,切線的方程為.
(Ⅱ)因為點(diǎn)既在切線上,也在切線上,
由(1)可得,,故,.
又點(diǎn)的坐標(biāo)為.
所以點(diǎn)的縱坐標(biāo)為,
即點(diǎn)的坐標(biāo)為.故在拋物線上.
(Ⅲ)由(Ⅰ)知: ,
,所以 .
設(shè),則.
當(dāng)時,即當(dāng)時,取最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蛋糕店制作并銷售一款蛋糕,當(dāng)天每售出個獲得利潤元,未售出的每個虧損元.根據(jù)以往天的資料統(tǒng)計,得到如下需求量表.元日這天,此蛋糕店制作了這款蛋糕個.以(單位:個, )表示這天的市場需求量. (單位:元)表示這天出售這款蛋糕獲得的利潤.
需求量/個 | |||||
天數(shù) | 15 | 25 | 30 | 20 | 10 |
(1)當(dāng)時,若時獲得的利潤為, 時獲得的利潤為,試比較和的大小;
(2)當(dāng)時,根據(jù)上表,從利潤不少于元的天數(shù)中,按需求量分層抽樣抽取天,
(ⅰ)求這天中利潤為元的天數(shù);
(ⅱ)再從這天中抽取天做進(jìn)一步分析,設(shè)這天中利潤為元的天數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)對一種新品種小麥在一塊試驗田進(jìn)行試種.從試驗田中抽取株小麥,測量這些小麥的生長指標(biāo)值,由測量結(jié)果得如下頻數(shù)分布表:
生長指標(biāo)值分組 | |||||||
頻數(shù) |
(1)在相應(yīng)位置上作出這些數(shù)據(jù)的頻率分布直方圖;
(2)求這株小麥生長指標(biāo)值的樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)由直方圖可以認(rèn)為,這種小麥的生長指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù), 近似為樣本方差.
①利用該正態(tài)分布,求;
②若從試驗田中抽取株小麥,記表示這株小麥中生長指標(biāo)值位于區(qū)間的小麥株數(shù),利用①的結(jié)果,求.
附: .
若,則,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面為直角梯形,AD∥BC,AD=2BC=2,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E為AD的中點(diǎn),△PAD為正三角形,M是棱PC上的一點(diǎn)(異于端點(diǎn)).
(1)若M為PC的中點(diǎn),求證:PA∥平面BME;
(2)是否存在點(diǎn)M,使二面角MBED的大小為30°.若存在,求出點(diǎn)M的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若f (x)在區(qū)間(-∞,2)上為單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若a=0,x0<1,設(shè)直線y=g(x)為函數(shù)f (x)的圖象在x=x0處的切線,求證:f (x)≤g(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=ln x+x2-ax(a為常數(shù)).
(1)若x=1是函數(shù)f (x)的一個極值點(diǎn),求a的值;
(2)當(dāng)0<a≤2時,試判斷f (x)的單調(diào)性;
(3)若對任意的a∈(1,2),x0∈[1,2],不等式f (x0)>mln a 恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年某開發(fā)區(qū)一家汽車生產(chǎn)企業(yè)計劃引進(jìn)一批新能源汽車制造設(shè)備,通過市場分析,全年需投入固定成本3000萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且,由市場調(diào)研知,每輛車售價6萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.
(1)求出2019年的利潤(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤=銷售額成本)
(2)2019年產(chǎn)量為多少(百輛)時,企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點(diǎn)的橫坐標(biāo)都縮短為原來的倍,縱坐標(biāo)坐標(biāo)都伸長為原來的倍,得到曲線,在極坐標(biāo)系(與直角坐標(biāo)系取相同的單位長度,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線的極坐標(biāo)方程為.
(1)求直線和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)是曲線上的一個動點(diǎn),求它到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)在內(nèi)的單調(diào)性;
(Ⅱ)若存在正數(shù),對于任意的,不等式恒成立,求正實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com