【題目】已知曲線C的參數(shù)方程為(φ為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.
(1)直線l與曲線C是否有公共點?并說明理由;
(2)若直線l與兩坐標軸的交點為A,B,點P是曲線C上的一點,求△PAB的面積的最大值.
【答案】(1)沒有交點,理由見詳解;(2)3.
【解析】
(1)將曲線的參數(shù)方程化為普通方程,將直線的極坐標方程化為直角方程,聯(lián)立方程組,根據(jù)的情況,求得兩曲線的相交情況;
(2)由(1)中所求,容易得點的坐標,設(shè)點坐標為(3cosθ,sinθ),再將問題轉(zhuǎn)化為三角函數(shù)值域的問題即可求得.
(1)曲線C的參數(shù)方程為(φ為參數(shù)),
轉(zhuǎn)換為直角坐標方程為.
直線l的極坐標方程為,
整理得,
轉(zhuǎn)換為直角坐標方程為x﹣y﹣6=0,
聯(lián)立方程組
消去,可得10y2+12y+27=0,
由于△=122﹣4×10×27<0,所以直線與橢圓沒有交點.
(2)直線的直角坐標方程為x﹣y﹣6=0,
與x軸的交點A(6,0)與y軸的交點坐標為B(0,6),
所以|AB|,
設(shè)橢圓上點P的坐標為(3cosθ,sinθ),
所以點P到直線l的距離d
,
當時,,
則3.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了調(diào)查學(xué)生的學(xué)習(xí)情況,由每班隨機抽取名學(xué)生進行調(diào)查,若一班有名學(xué)生,將每一學(xué)生編號從到,請從隨機數(shù)表的第行第、列(下表為隨機數(shù)表的前行)開始,依次向右,直到取足樣本,則第五個編號為_________.
7816 | 6514 | 0802 | 6314 | 0702 | 4369 | 9728 | 0198 |
3204 | 9234 | 4935 | 8200 | 3623 | 4869 | 6938 | 7481 |
7816 | 6514 | 0802 | 6314 | 0702 | 4369 | 9728 | 0198 |
3204 | 9234 | 4935 | 8200 | 3623 | 4869 | 6938 | 7481 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x-ax+(a-1),。
(1)討論函數(shù)的單調(diào)性;
(2)證明:若,則對任意x,x,xx,有。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx1,g(x)=x33tx+1(t>0).
(1)當a時,求f(x)在區(qū)間[,e]上的最值;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)若g(x)≤xex﹣m+2(e為自然對數(shù)的底數(shù))對任意x∈[0,+∞)恒成立時m的最大值為1,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+2x,g(x)=x+ln x,h(x)=x--1的零點分別為x1,x2,x3,則x1,x2,x3的大小關(guān)系是________(由小到大).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解中學(xué)生的課外閱讀時間,決定在該中學(xué)的1200名男生和800名女生中按分層抽樣的方法抽取20名學(xué)生,對他們的課外閱讀時間進行問卷調(diào)查.現(xiàn)在按課外閱讀時間的情況將學(xué)生分成三類:類(不參加課外閱讀),類(參加課外閱讀,但平均每周參加課外閱讀的時間不超過3小時),類(參加課外閱讀,且平均每周參加課外閱讀的時間超過3小時).調(diào)查結(jié)果如下表:
類 | 類 | 類 | |
男生 | 5 | 3 | |
女生 | 3 | 3 |
(1)求出表中,的值;
(2)根據(jù)表中的統(tǒng)計數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%的把握認為“參加課外閱讀與否”與性別有關(guān);
男生 | 女生 | 總計 | ||
不參加課外閱讀 | ||||
參加課外閱讀 | ||||
總計 |
P(K≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)f(x)=(3m2﹣2m)x在(0,+∞)上單調(diào)遞增,g(x)=x2﹣4x+t.
(1)求實數(shù)m的值;
(2)當x∈[1,9]時,記f(x),g(x)的值域分別為集合A,B,設(shè)命題p:x∈A,命題q:x∈B,若命題p是命題q的充分不必要條件,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x+1|﹣2|x﹣m|,m∈N,且f(x)<3恒成立.
(1)求m的值;
(2)當,時,f(a)+f(b)=﹣2,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1中,P,Q,L分別為棱A1D1,C1D1,BC的中點.
(1)求證:AC⊥QL;
(2)求四面體DPQL的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com