若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值-.
(1)求函數(shù)的解析式;
(2)若關(guān)于x的方程f(x)=k有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍。
【解析】由題意可知f′(x)=3ax2-b,
(1)于是
故所求的解析式為f(x)=x3-4x+4.
(2)由(1)可知f′(x)=x2-4=(x-2)(x+2),
令f′(x)=0,得x=2,或x=-2.
當(dāng)x變化時(shí)f′(x)、f(x)的變化情況如下表所示:
X | (-∞,-2) | -2 | (-2,2) | 2 | (2,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 單調(diào)遞增 |
| 單調(diào)遞減 | 單調(diào)遞增 |
因此,當(dāng)x=-2時(shí),f(x)有極大值;
當(dāng)x=2時(shí),f(x)有極小值-.
所以函數(shù)的大致圖象如圖.故實(shí)數(shù)k的取值范圍是-<k<.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)f(x)=ax+b(a0)有一個(gè)零點(diǎn)是-2,則函數(shù)g(x)=bx2-ax的零點(diǎn)是( )
A.2,0 B.2, C.0, D.0,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)f(x)=ax-x-a(a>0,a≠1)有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)f(x)=ax-x-a(a>0,且a≠1)有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)f(x)=ax+(a∈R),則下列結(jié)論正確的是( )
A.∀a∈R,函數(shù)f(x)在(0,+∞)上是增函數(shù)
B.∀a∈R,函數(shù)f(x)在(0,+∞)上是減函數(shù)
C.∃a∈R,函數(shù)f(x)為奇函數(shù)
D.∃a∈R,函數(shù)f(x)為偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)f(x)=ax(a>0,a≠1)在[-1,2]上的最大值為4,最小值為m,且函數(shù)g(x)=(1-4m)在[0,+∞)上是增函數(shù),則a=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com