17、如圖所示,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為DD1,DB的中點(diǎn)
(1)求證:EF∥平面ABC1D1; 
(2)求二面角B1-EF-C的大。
分析:(1)連BD1,因?yàn)镋,F(xiàn)分別為DD1,DB的中點(diǎn),由三角形的中位線(xiàn)的性質(zhì),我們易得EF∥BD1,進(jìn)而根據(jù)線(xiàn)面平行的判定定理,得到EF∥平面ABC1D1; 
(2)由在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為DD1,DB的中點(diǎn),我們易得面CEF⊥面B1EF,根據(jù)直二面角的定義,易得到二面角B1-EF-C的大小.
解答:解:(1)連BD1,因?yàn)镋,F(xiàn)分別為DD1,DB的中點(diǎn),?EF∥BD1,又EF?面ABC1D1,BD1?面ABC1D1,所以,EF∥面ABC1D1
(2)∵F為BD的中點(diǎn),?CF⊥BD,又CF⊥BB1,?CF⊥面BB1D1D,?面CEF⊥面BB1D1D,?面CEF⊥面B1EF,∴二面角B1-EF-C的大小為90°.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是平面與平面垂直的判定,直線(xiàn)與平面平行的判定,其中熟練掌握空間線(xiàn)面平行和垂直的判定定理及性質(zhì)定理,是解答此類(lèi)問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為DD1、DB的中點(diǎn).
(Ⅰ)求證:EF∥平面ABC1D1;
(Ⅱ)求證:EF⊥B1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在棱長(zhǎng)為2的正方體中,E、F分別為DD1、BD的中點(diǎn).  
(1)求證:EF∥面ABC1D1
(2)求證EF∥BD1
(3)求三棱錐VB1-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E、F分別為DD1、DB的中點(diǎn).
(I)求證:EF⊥B1C;
(II)求二面角E-FC-D的正切值;
(III)求三棱錐F-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•虹口區(qū)三模)如圖所示,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E、F分別為DD1、DB的中點(diǎn).
(Ⅰ)求證:CF⊥B1E;
(Ⅱ)求三棱錐VB1-EFC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案