已知正項(xiàng)數(shù)列{an},{bn}滿足a1=3,a2=6,{bn}是等差數(shù)列,且對(duì)任意正整數(shù)n,都有成等比數(shù)列.
( I)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè),試比較2Sn的大。
【答案】分析:(I)利用正項(xiàng)數(shù)列{an},{bn}滿足對(duì)任意正整數(shù)n,都有成等比數(shù)列,可得an=bnbn+1,結(jié)合{bn}是等差數(shù)列,可求數(shù)列的公差,從而可求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)確定數(shù)列{an}的通項(xiàng),利用裂項(xiàng)法求和,再作出比較,可得結(jié)論.
解答:解:(I)∵正項(xiàng)數(shù)列{an},{bn}滿足對(duì)任意正整數(shù)n,都有成等比數(shù)列,
∴an=bnbn+1
∵a1=3,a2=6,∴b1b2=3,b2b3=6
∵{bn}是等差數(shù)列,∴b1+b3=2b2,∴b1=,b2=
∴bn=;
(Ⅱ)an=bnbn+1=,則=2(
∴Sn=2[()+()+…+()]=1-
∴2Sn=2-
=2-
∴2Sn-()=
∴當(dāng)n=1,2時(shí),2Sn;當(dāng)n≥3時(shí),2Sn
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)與求和,考查大小比較,考查學(xué)生的計(jì)算能力,確定數(shù)列的通項(xiàng)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)數(shù)列{an}滿足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
(1)求證:數(shù)列{
an
2n+1
}
為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)an
(2)設(shè)bn=
1
an
,求數(shù)列{bn}的前n項(xiàng)和為Sn,并求Sn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:稱
n
a1+a2+…+an
為n個(gè)正數(shù)a1,a2,…,an的“均倒數(shù)”,已知正項(xiàng)數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為
1
2n
,則
lim
n→∞
nan
sn
( 。
A、0
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)數(shù)列an中,a1=2,點(diǎn)(
an
,an+1)
在函數(shù)y=x2+1的圖象上,數(shù)列bn中,點(diǎn)(bn,Tn)在直線y=-
1
2
x+3
上,其中Tn是數(shù)列bn的前項(xiàng)和.(n∈N+).
(1)求數(shù)列an的通項(xiàng)公式;
(2)求數(shù)列bn的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)數(shù)列{an}滿足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求證:數(shù)列{bn}為等比數(shù)列;
(2)記Tn為數(shù)列{
1
log2bn+1log2bn+2
}
的前n項(xiàng)和,是否存在實(shí)數(shù)a,使得不等式Tn<log0.5(a2-
1
2
a)
對(duì)?n∈N+恒成立?若存在,求出實(shí)數(shù)a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)數(shù)列{an},Sn=
1
8
(an+2)2

(1)求證:{an}是等差數(shù)列;
(2)若bn=
1
2
an-30
,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案