解:(1)∵NP為AM的中垂線
∴NA=NM
∴NA+NC=CM=2
∴N的軌跡為A,C為焦點(diǎn)的橢圓2a=2
∴
,c=1
∴b=1
∴方程為
(2)當(dāng)
時,即G為FH中點(diǎn)時,設(shè)G(x
1,y
1)、H(x
2,y
2)
∴
,代入橢圓得
,
∴
∴
∴
(3)(i)∵由過F
1的直線交曲線于Q,S兩點(diǎn),過F
2的直線交曲線于R,T兩點(diǎn),且QS⊥RT
∴W在以F
1F
2為直徑的圓上,F(xiàn)
1F
2=2
∴x
02+y
02=1
∴
(ii)設(shè)QS的方程為y=k(x+1)(當(dāng)k存在且不為0時)
代入
∴(1+2k
2)x
2+4k
2x+2k
2-2=0
設(shè)Q(x
3,y
3),S(x
4,y
4)
∴
,
∴
,
∵QS⊥RT
∴
,同理,
∴
≥
(當(dāng)且僅當(dāng)k
2=1時,取等號)
當(dāng)k不存在或k=0時,
∵
∴
分析:(1)由于AM=2AP且NP⊥AM即NP為AM的中垂線故聯(lián)想到連接NA即可觀察出NA+NC=CM=2
在根據(jù)圓錐曲線的定義可寫出曲線E的方程.
(2)設(shè)G(x
1,y
1)、H(x
2,y
2)根據(jù)
可利用定比分點(diǎn)坐標(biāo)公式(
)找到點(diǎn)G,H的坐標(biāo)間的關(guān)系然后代入到曲線E的方程可求出點(diǎn)D或G再根據(jù)直線的斜率公式求出斜率后有點(diǎn)斜式直接寫出直線方程.
(3)(i)由過F
1的直線交曲線于Q,S兩點(diǎn),過F
2的直線交曲線于R,T兩點(diǎn),且QS⊥RT可得出W在以F
1F
2為直徑的圓上且F
1F
2=2,F(xiàn)
1(-1,0),F(xiàn)
2(1,0)可得出w滿足x
02+y
02=1再利用
進(jìn)行放縮即可得證.
(ii)當(dāng)斜率不存在或斜率為0時易得面積S=
,當(dāng)斜率存在時設(shè)為k則可得QS的方程為y=k(x+1)同時設(shè)Q(x
3,y
3),S(x
4,y
4)可令y=k(x+1)與
聯(lián)立可求出x
3+x
4,x
3x
4后可利用弦長公式求出|QS|,再用-
代替|QS|中的k即得到|RT|即可得出四邊形QRST的面積的表達(dá)式然后利用均值不等求出最小值,再將此最小值與
比較大小即可求出面積的最小值.
點(diǎn)評:本題是直線與圓錐曲線的綜合問題的考查,是綜合題有一定的難度.主要考查了利用圓錐曲線的定義求曲線方程(第一問),利用定比分點(diǎn)公式結(jié)合曲線方程求直線方程(第二問),利用圓的定義證明不等式和利用直線和曲線連立以及弦長公式求面積的最小值(第三問).同時題目中還涉及到了斜率存在與不存在的討論,這也是分類討論思想在解題中的應(yīng)用的一個體現(xiàn)!