20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<5}\\{f(x-1),x≥5}\end{array}\right.$,f(6)的值為16.

分析 由題意知f(6)=f(5)=f(4),由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<5}\\{f(x-1),x≥5}\end{array}\right.$,
∴f(6)=f(5)=f(4)=24=16.
故答案為:16.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.近年來(lái)我國(guó)電子商務(wù)行業(yè)迎來(lái)發(fā)展的新機(jī)遇.2016年雙11期間,某購(gòu)物平臺(tái)的銷售業(yè)績(jī)高達(dá)918億人民幣.與此同時(shí),相關(guān)管理部門推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系.現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都作出好評(píng)的交易為80次.
(1)能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
(2)若將頻率視作概率,某人在該購(gòu)物平臺(tái)上進(jìn)行5次購(gòu)物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為隨機(jī)變量X:
①求對(duì)商品和服務(wù)全為好評(píng)的次數(shù)X的分布列(概率用組合數(shù)算式表示);
②求X的數(shù)學(xué)期望和方程.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.某校甲、乙、丙、丁四個(gè)課外興趣班分別有75、75、200、150名學(xué)生,用分層抽樣的方法從該校這四個(gè)班共抽取20名學(xué)生參加某興趣活動(dòng),則應(yīng)在丙班抽取的學(xué)生人數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.某公司的班車在7:00,8:00,8:30發(fā)車,小明在7:50至8:30之間到達(dá)發(fā)車站乘坐班車,且到達(dá)發(fā)車站的時(shí)刻是隨機(jī)的,則他等車時(shí)間不超過(guò)10分鐘的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=x3+x+1,若對(duì)任意的x,都有f(x2+a)+f(ax)>2,則實(shí)數(shù)a的取值范圍是0<a<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)$a={3^{\frac{1}{3}}},b={(\frac{1}{4})^{3.1}},c={log_{0.4}}3$,則a,b,c的大小關(guān)系為( 。
A.c<a<bB.c<b<aC.b<a<cD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.假設(shè)行列式的計(jì)算公式:$|\begin{array}{l}{a}&\\{c}&v9q3ckx\end{array}|$=ad-bc,若f(x)=$|\begin{array}{l}{x}&{x}\\{3}&{{x}^{2}}\end{array}|$,則函數(shù)f(x)的單調(diào)減區(qū)間為( 。
A.$(-\sqrt{3},\sqrt{3})$B.(-1,1)C.$(-\sqrt{2},\sqrt{2})$D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列有關(guān)向量的說(shuō)法:
①若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$;
②若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$在$\overrightarrow$上的投影為|$\overrightarrow{a}$|;
③若向量$\overrightarrow{a}$=(λ,2λ)與$\overrightarrow$=(3λ,2)的夾角為銳角,則λ<-$\frac{4}{3}$或λ>0;
④若O為△ABC內(nèi)一點(diǎn),且$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,則S△AOB:S△AOC:S△BOC=3:2:1.
其中,錯(cuò)誤命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知O,F(xiàn)分別為雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的中心和右焦點(diǎn),點(diǎn)G、M分別在E的漸近線和右支上,若$\overrightarrow{FG}$•$\overrightarrow{OG}$=0,GM∥x軸,|OM|=|OF|,則E的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案