△ABC內(nèi),AD是角A的平分線,,則AC邊所在的直線方程是

[    ]

A3x-4y-16=0   B3x+4y+16=0

C3x+4y-16=0   D3x-4y+16=0

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知正△ABC的頂點A在平面α內(nèi),頂點B,C在平面α的同一側(cè),D為BC的中點,若△ABC在平面α內(nèi)的射影是以A為直角頂點的三角形,則直線AD與平面α所成角的正弦值的最小值為
6
3
6
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•湖南模擬)如圖所示,已知△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC⊥平面ABC,AB=2,tan∠EAB=
3
2

(1)證明:平面ACD⊥平面ADE,
(2)令AC=x,V(x) 表示三棱錐A-CBE的體積,當V(x) 取得最大值時,求直線AD與平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一副三角板(如圖),其中△ABC中,AB=AC,∠BAC=90°,△DMN 中,∠MND=90°,∠D=60°,現(xiàn)將兩相等長的邊BC、MN重合,并翻折構(gòu)成四面體ABCD.CD=a
(1)當平面ABC⊥平面BCD(圖(1))時,求直線AD與平面BCD所成角的正弦值
(2)當將平面ABC翻折到使A到B、C、D三點的距離相等時(圖(2)),
①求證:A在平面BCD內(nèi)的射影是BD的中點;
②求二面角A-CD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:013

△ABC內(nèi), AD是角A的平分線, A(0,4), B(-3,0), D(, -), 則AC邊方程是

[  ]

A. 3x - 4y - 16 = 0  B. 3x + 4y + 16 = 0

C. 3x + 4y - 16 = 0  D. 3x - 4y + 16 = 0

查看答案和解析>>

同步練習冊答案