【題目】在△ABC中,a,b,c分別為角A,B,C的對邊.若acosB=3,bcosA=l,且A﹣B=
(1)求邊c的長;
(2)求角B的大。
【答案】
(1)解:∵acosB=3,bcosA=l,∴a× =3,b× =1,
化為:a2+c2﹣b2=6c,b2+c2﹣a2=2c.
相加可得:2c2=8c,解得c=4
(2)解:由(1)可得:a2﹣b2=8.
由正弦定理可得: ,
又A﹣B= ,∴A=B+ ,C=π﹣(A+B)= ,可得sinC=sin .
∴a= ,b= .
∴ ﹣16sin2B= ,
∴1﹣ ﹣(1﹣cos2B)= ,即cos2B﹣ = ,
∴﹣2 ═ ,
∴ =0或 =1,B∈ .
解得:B=
【解析】(1)由acosB=3,bcosA=l,利用余弦定理化為:a2+c2﹣b2=6c,b2+c2﹣a2=2c.相加即可得出c.(2)由(1)可得:a2﹣b2=8.由正弦定理可得: ,又A﹣B= ,可得A=B+ ,C= ,可得sinC=sin .代入可得 ﹣16sin2B= ,化簡即可得出.
科目:高中數學 來源: 題型:
【題目】將函數f(x)=sin2x的圖象向右平移φ(0<φ< )個單位后得到函數g(x)的圖象.若對滿足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,則φ=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax3+cx(a>0),其圖象在點(1,f(1))處的切線與直線 x﹣6y+21=0垂直,導函數
f′(x)的最小值為﹣12.
(1)求函數f(x)的解析式;
(2)求y=f(x)在x∈[﹣2,2]的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一網站營銷部為統(tǒng)計某市網友2017年12月12日在某網店的網購情況,隨機抽查了該市60名網友在該網店的網購金額情況,如表:
網購金額 (單位:千元) | 頻數 | 頻率 |
3 | ||
9 | ||
15 | ||
18 | ||
合計 | 60 |
若將當日網購金額不小于2千元的網友稱為“網購達人”,網購金額小于2千元的網友稱為“網購探者”,已知“網購達人”與“網購探者”人數的比例為.
(1)確定,,,的值,并補全頻率分布直方圖;
(2)試根據頻率分布直方圖估算這60名網友當日在該網店網購金額的平均數和中位數;若平均數和中位數至少有一個不低于2千元,則該網店當日評為“皇冠店”,試判斷該網店當日能否被評為“皇冠店”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【選修4﹣1幾何證明選講】
如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點D,E、F分別為弦AB與弦AC上的點,且BCAE=DCAF,B、E、F、C四點共圓.
(1)證明:CA是△ABC外接圓的直徑;
(2)若DB=BE=EA,求過B、E、F、C四點的圓的面積與△ABC外接圓面積的比值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓 =l (a>b>0)的焦距為2,離心率為 ,橢圓的右頂點為A.
(1)求該橢圓的方程:
(2)過點D( ,﹣ )作直線PQ交橢圓于兩個不同點P,Q,求證:直線AP,AQ的
斜率之和為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二階矩陣M有特征值λ=8及對應的一個特征向量 =[ ],并且矩陣M對應的變換將點(﹣1,2)變換成(﹣2,4).
(1)求矩陣M;
(2)求矩陣M的另一個特征值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形, 底面, ,過點的平面與棱, , 分別交于點, , (, , 三點均不在棱的端點處).
(Ⅰ)求證:平面平面;
(Ⅱ)若平面,求的值;
(Ⅲ)直線是否可能與平面平行?證明你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com