【題目】設(shè)橢圓 的左、右焦點(diǎn)分別為,上頂點(diǎn)為A,過(guò)點(diǎn)A垂直的直線(xiàn)交軸負(fù)半軸于點(diǎn),且,若過(guò), , 三點(diǎn)的圓恰好與直線(xiàn)相切.過(guò)定點(diǎn)的直線(xiàn)與橢圓交于, 兩點(diǎn)(點(diǎn)在點(diǎn), 之間).

Ⅰ)求橢圓的方程;Ⅱ)若實(shí)數(shù)滿(mǎn)足,求的取值范圍.

【答案】 ;(

【解析】試題分析:(1)由題意,得橢圓方程為.;(2設(shè)直線(xiàn)方程為,所以,利用韋達(dá)定理,就出的取值范圍.

試題解析:

Ⅰ)因?yàn)?/span>,所以的中點(diǎn).設(shè)的坐標(biāo)為,

因?yàn)?/span>,所以,,

且過(guò)三點(diǎn)的圓的圓心為,半徑為.因?yàn)樵搱A與直線(xiàn)相切,所以.

解得,所以,.

故所求橢圓方程為.

Ⅱ/span>①當(dāng)直線(xiàn)斜率存在時(shí),

設(shè)直線(xiàn)方程為,代入橢圓方程

.

,得.設(shè),,

.

,所以.所以.

所以,.

所以.所以.

整理得.因?yàn)?/span>,所以,即.所以.

解得.

,所以.

②又當(dāng)直線(xiàn)斜率不存在時(shí),直線(xiàn)的方程為,

此時(shí),,,

,所以.

所以,即所求的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)Cy2=2px過(guò)點(diǎn)P(1,1).過(guò)點(diǎn)(0, )作直線(xiàn)l與拋物線(xiàn)C交于不同的兩點(diǎn)M,N,過(guò)點(diǎn)Mx軸的垂線(xiàn)分別與直線(xiàn)OP,ON交于點(diǎn)AB,其中O為原點(diǎn).

(Ⅰ)求拋物線(xiàn)C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線(xiàn)方程;

(Ⅱ)求證:A為線(xiàn)段BM的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,在四棱錐P﹣ABCD中,側(cè)面PAD底面ABCD,側(cè)棱PA=PD= ,PA⊥PD,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O為AD中點(diǎn).

(1) 求直線(xiàn)PB與平面POC所成角的余弦值;

(2)線(xiàn)段上是否存在一點(diǎn),使得二面角的余弦值為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),橢圓 的左焦點(diǎn)是,離心率為,且上任意一點(diǎn)的最短距離為.

(1)求的方程;

(2)過(guò)點(diǎn)的直線(xiàn)(不過(guò)原點(diǎn))與交于兩點(diǎn), 為線(xiàn)段的中點(diǎn).

(i)證明:直線(xiàn)的斜率乘積為定值;

(ii)求面積的最大值及此時(shí)的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:對(duì)任意,不等式恒成立;命題q:存在,使得成立.

(1)p為真命題,求m的取值范圍;

(2)當(dāng),若pq為假,pq為真,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題:函數(shù)的定義域?yàn)?/span>;命題:關(guān)于的方程有實(shí)根.

(1)如果是真命題,求實(shí)數(shù)的取值范圍.

(2)如果命題“”為真命題,且“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓、拋物線(xiàn)的焦點(diǎn)均在軸上, 的中心和的頂點(diǎn)均為原點(diǎn),平面上四個(gè)點(diǎn), , , 中有兩個(gè)點(diǎn)在橢圓上,另外兩個(gè)點(diǎn)在拋物線(xiàn)上.

(1)求的標(biāo)準(zhǔn)方程;

(2)是否存在直線(xiàn)滿(mǎn)足以下條件:①過(guò)的焦點(diǎn);②與交于兩點(diǎn),且以為直徑的圓經(jīng)過(guò)原點(diǎn).若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)采用隨機(jī)模擬的方法估計(jì)一位射箭運(yùn)動(dòng)員三次射箭恰有兩次命中的概率:先由計(jì)算機(jī)隨機(jī)產(chǎn)生09之間取整數(shù)的隨機(jī)數(shù),指定1,2,3,4,5表示命中,6,7,8,9,0表示不命中,再以三個(gè)隨機(jī)數(shù)為一組,代表三次射箭的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

807 966 191 925 271 932 812 458 569 683

489 257 394 027 552 488 730 113 537 741

根據(jù)以上數(shù)據(jù),估計(jì)該運(yùn)動(dòng)員三次射箭恰好有兩次命中的概率為

A. 0.20 B. 0.25 C. 0.30 D. 0.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別是 ,且點(diǎn)在橢圓上.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓的左頂點(diǎn)為,過(guò)點(diǎn)的直線(xiàn)與橢圓相交于異于的不同兩點(diǎn), ,求的面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案