【題目】據(jù)長(zhǎng)期統(tǒng)計(jì)分析,某貨物每天的需求量在17與26之間,日需求量(件)的頻率分布如下表所示:
需求量 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
頻率 | 0.12 | 0.18 | 0.23 | 0.13 | 0.10 | 0.08 | 0.05 | 0.04 | 0.04 | 0.03 |
已知其成本為每件5元,售價(jià)為每件10元.若供大于求,則每件需降價(jià)處理,處理價(jià)每件2元.假設(shè)每天的進(jìn)貨量必需固定.
(1)設(shè)每天的進(jìn)貨量為,視日需求量的頻率為概率,求在每天進(jìn)貨量為的條件下,日銷售量的期望值(用表示);
(2)在(1)的條件下,寫(xiě)出和的關(guān)系式,并判斷為何值時(shí),日利潤(rùn)的均值最大?
【答案】(1)當(dāng)時(shí),;當(dāng)時(shí),.
(2);時(shí),日利潤(rùn)均值最大
【解析】
(1)分日需求量與進(jìn)貨量的大小關(guān)系,確定日銷售量,從而得出日銷售量的期望值;
(2)由(1)可得,可得和的關(guān)系,設(shè)每天進(jìn)貨量為時(shí),日利潤(rùn)為,則,分析正負(fù)可得出日利潤(rùn)均值的最大值.
(1)當(dāng)日需求量時(shí),日銷售量為;當(dāng)日需求量時(shí),日銷售量為,故日銷售量的期望值為:
當(dāng)時(shí),每天的進(jìn)貨量為,根據(jù)貨物的日需求量的頻率表得,此時(shí)的日銷售量為17件,
∴;
當(dāng)時(shí),每天的進(jìn)貨量為,根據(jù)貨物的日需求量的頻率表得,
此時(shí)日銷售量為17件的概率為,日銷售量為18件的概率為,
∴;
當(dāng)時(shí),每天的進(jìn)貨量為,根據(jù)貨物的日需求量的頻率表得,
此時(shí)日銷售量為17件的概率為,日銷售量為18件的概率為,日銷售量為19件的概率為,
∴; ,同理可得:
;
;
所以當(dāng)時(shí),;當(dāng)時(shí),.
(2).
設(shè)每天進(jìn)貨量為時(shí),日利潤(rùn)為,則
,
∴.
由.
又∵,,
即,
∴最大,∴應(yīng)進(jìn)貨20件時(shí),日利潤(rùn)均值最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知單調(diào)等比數(shù)列中,首項(xiàng)為 ,其前n項(xiàng)和是,且成等差數(shù)列,數(shù)列滿足條件
(Ⅰ) 求數(shù)列、的通項(xiàng)公式;
(Ⅱ) 設(shè) ,記數(shù)列的前項(xiàng)和 .
①求 ;②求正整數(shù),使得對(duì)任意,均有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為的導(dǎo)函數(shù).
(1)證明:在定義域上存在唯一的極大值點(diǎn);
(2)若存在,使,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某書(shū)店今年5月上架10種新書(shū),且它們的首月銷量(單位:冊(cè))情況為:100,50,100,150,150,100,150,50,100,100,頻率為概率,解答以下問(wèn)題:
(1)若該書(shū)店打算6月上架某種新書(shū),估計(jì)它首月銷量至少為100冊(cè)的概率;
(2)若某種最新出版的圖書(shū)訂購(gòu)價(jià)為10元/冊(cè),該書(shū)店計(jì)劃首月內(nèi)按12元/冊(cè)出售,第二個(gè)月起按8元/冊(cè)降價(jià)出售,降價(jià)后全部存貨可以售出.試確定,該書(shū)店訂購(gòu)該圖書(shū)50冊(cè),100冊(cè),還是150冊(cè)有利于獲得更多利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線過(guò)橢圓的右焦點(diǎn),拋物線的焦點(diǎn)為橢圓的上頂點(diǎn),且交橢圓于兩點(diǎn),點(diǎn)在直線上的射影依次為.
(1)求橢圓的方程;
(2)若直線交軸于點(diǎn),且,當(dāng)變化時(shí),證明: 為定值;
(3)當(dāng)變化時(shí),直線與是否相交于定點(diǎn)?若是,請(qǐng)求出定點(diǎn)的坐標(biāo),并給予證明;否則,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間及極值;
(2)討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的左、右焦點(diǎn)坐標(biāo)分別是,,離心率是,直線與橢圓C交與不同的兩點(diǎn)M,N,以線段MN為直徑作圓P,圓心為P.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若圓P與x軸相切,求圓心P的坐標(biāo);
(Ⅲ)設(shè)Q(x,y)是圓P上的動(dòng)點(diǎn),當(dāng)t變化時(shí),求y的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,,其中為正實(shí)數(shù),為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù),使得對(duì)任意給定的,在區(qū)間上總存在兩個(gè)不同的,,使得成立?若存在,求出正實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,的離心率為,且點(diǎn)在此橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與圓相切于第一象限內(nèi)的點(diǎn),且與橢圓交于.兩點(diǎn).若的面積為,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com