【題目】(2016·桂林高二檢測(cè))如圖所示,在四邊形ABCD,AB=AD=CD=1BD=,BDCD,將四邊形ABCD沿對(duì)角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD則下列結(jié)論正確的是________.

(1)A′C⊥BD.(2)∠BA′C=90°.

(3)CA′與平面A′BD所成的角為30°.

(4)四面體A′-BCD的體積為.

【答案】(2)(4)

【解析】若A′C⊥BD,又BD⊥CD,

則BD⊥平面A′CD,則BD⊥A′D,顯然不可能,故(1)錯(cuò)誤.

因?yàn)锽A′⊥A′D,BA′⊥CD,故BA′⊥平面A′CD,

所以BA′⊥A′C,所以∠BA′C=90°,故(2)正確.

因?yàn)槠矫鍭′BD⊥平面BCD,BD⊥CD,

所以CD⊥平面A′BD,CA′與平面A′BD所成的角為∠CA′D,

因?yàn)锳′D=CD,

所以∠CA′D=,故(3)錯(cuò)誤.

四面體A′-BCD的體積為V=SBDA·h=××1=,

因?yàn)锳B=AD=1,DB=,

所以A′C⊥BD,綜上(2)(4)成立.

點(diǎn)睛:立體幾何中折疊問(wèn)題,要注重折疊前后垂直關(guān)系的變化,不變的垂直關(guān)系是解決問(wèn)題的關(guān)鍵條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分,第(1)問(wèn) 4 分,第(2)問(wèn) 8 分)

某闖關(guān)游戲規(guī)則是:先后擲兩枚骰子,將此實(shí)驗(yàn)重復(fù)輪,第輪的點(diǎn)數(shù)分別記為,如果點(diǎn)數(shù)滿足,則認(rèn)為第輪闖關(guān)成功,否則進(jìn)行下一輪投擲,直到闖關(guān)成功,游戲結(jié)束。

求第一輪闖關(guān)成功的概率;

如果游戲只進(jìn)行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進(jìn)行的輪數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在點(diǎn)處的切線方程為,求的值;

(2)若在區(qū)間上,函數(shù)的圖象恒在直線下方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

設(shè)函數(shù)

(1)證明:;

(2)若不等式的解集是非空集,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且滿足,求數(shù)列的通項(xiàng)公式.勤于思考的小紅設(shè)計(jì)了下面兩種解題思路,請(qǐng)你選擇其中一種并將其補(bǔ)充完整.

思路1:先設(shè)的值為1,根據(jù)已知條件,計(jì)算出_________ __________, _________

猜想: _______.

然后用數(shù)學(xué)歸納法證明.證明過(guò)程如下:

①當(dāng)時(shí),________________,猜想成立

②假設(shè)N*)時(shí),猜想成立,即_______

那么,當(dāng)時(shí),由已知,得_________

,兩式相減并化簡(jiǎn),得_____________(用含的代數(shù)式表示).

所以,當(dāng)時(shí),猜想也成立.

根據(jù)①和②,可知猜想對(duì)任何N*都成立.

思路2:先設(shè)的值為1,根據(jù)已知條件,計(jì)算出_____________

由已知,寫出的關(guān)系式: _____________________

兩式相減,得的遞推關(guān)系式: ____________________

整理: ____________

發(fā)現(xiàn):數(shù)列是首項(xiàng)為________,公比為_______的等比數(shù)列.

得出:數(shù)列的通項(xiàng)公式____,進(jìn)而得到____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,定義域?yàn)?/span>上的函數(shù)是由一條射線及拋物線的一部分組成.利用該圖提供的信息解決下面幾個(gè)問(wèn)題.

1)求的解析式;

2)若關(guān)于的方程有三個(gè)不同解,求的取值范圍;

3)若,求的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】底面為菱形的直棱柱

中,

分別為棱

的中點(diǎn).

(1)在圖中作一個(gè)平面

,使得

,且平面

.(不必給出證明過(guò)程,只要求作出

與直棱柱

的截面).

(2)若

,求平面

與平面

的距離

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,已知曲線的極坐標(biāo)方程為.

(1)求的直角坐標(biāo)方程;

(2)直線為參數(shù))與曲線交于兩點(diǎn),與軸交于,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高職院校進(jìn)行自主招生文化素質(zhì)考試,考試內(nèi)容為語(yǔ)文、數(shù)學(xué)、英語(yǔ)三科,總分為200分.現(xiàn)從上線的考生中隨機(jī)抽取20人,將其成績(jī)用莖葉圖記錄如下:

td style="width:16.2pt; padding:3.75pt 5.4pt; vertical-align:middle">

15

6

5

4

16

3

5

8

8

2

17

2

3

6

8

8

8

6

5

18

5

7

19

2

3

(Ⅰ)計(jì)算上線考生中抽取的男生成績(jī)的方差;(結(jié)果精確到小數(shù)點(diǎn)后一位)

(Ⅱ)從上述莖葉圖180分以上的考生中任選2人作為考生代表出席座談會(huì),求所選考生恰為一男一女的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案