【題目】在數(shù)列{an}中,a1= ,且 =nan(n∈N+).
(1)寫出此數(shù)列的前4項;
(2)歸納猜想{an}的通項公式,并用數(shù)學歸納法加以證明.

【答案】
(1)解:a1= ,a2= ,a3= ,a4=
(2)解:猜想:an=

證明:①當n=1時,猜想顯然成立.

②假設n=k時猜想成立,即ak=

=nan,∴ =(2n﹣1)an

,

∴a1+a2+…+ak=(2k2+3k)ak+1

又a1+a2+…+ak=(2k2﹣k)ak= ,

∴ak+1= = ,

∴當n=k+1時,猜想成立.

由①②可知,對一切n∈N+,都有an=


【解析】(1)根據(jù)遞推式,依次令n=2,3,4計算a2 , a3 , a4;(2)根據(jù)前4相猜想通項公式,驗證n=1時猜想成立,假設n=k時猜想成立,根據(jù)條件推導ak+1得出結論.
【考點精析】關于本題考查的歸納推理和數(shù)學歸納法的定義,需要了解根據(jù)一類事物的部分對象具有某種性質,退出這類事物的所有對象都具有這種性質的推理,叫做歸納推理;數(shù)學歸納法是證明關于正整數(shù)n的命題的一種方法才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】水是地球上寶貴的資源,由于價格比較便宜在很多不缺水的城市居民經(jīng)常無節(jié)制的使用水資源造成嚴重的資源浪費.某市政府為了提倡低碳環(huán)保的生活理念鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸),一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照,,…,分成9組,制成了如圖所示的頻率分布直方圖.

(1)若全市居民中月均用水量不低于3噸的人數(shù)為3.6萬,試估計全市有多少居民?并說明理由;

(2)若該市政府擬采取分層抽樣的方法在用水量噸數(shù)為之間選取7戶居民作為議價水費價格聽證會的代表,并決定會后從這7戶家庭中按抽簽方式選出4戶頒發(fā)“低碳環(huán)保家庭”獎,設為用水量噸數(shù)在中的獲獎的家庭數(shù),為用水量噸數(shù)在中的獲獎家庭數(shù),記隨機變量,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工藝廠有銅絲5萬米,鐵絲9萬米,準備用這兩種材料編制成花籃和花盆出售,已知一只花籃需要用銅絲200米,鐵絲300米;編制一只花盆需要100米,鐵絲300米,設該廠用所有原來編制個花籃 個花盆.

(Ⅰ)列出滿足的關系式,并畫出相應的平面區(qū)域;

(Ⅱ)若出售一個花籃可獲利300元,出售一個花盤可獲利200元,那么怎樣安排花籃與花盆的編制個數(shù),可使得所得利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預測,甲、乙項目可能的最大盈利率分別為100%和50%,可能的最大虧損分別為30%和10%.投資人計劃投資金額不超過10萬元,要求確保可能的資金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)),其中為自然對數(shù)的底數(shù).

(1)討論函數(shù)的單調(diào)性及極值;

(2)若不等式內(nèi)恒成立,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓G: + =1(b>0)的上、下頂點和右焦點分別為M、N和F,且△MFN的面積為4
(1)求橢圓G的方程;
(2)若斜率為1的直線l與橢圓G交于A、B兩點.以AB為底作等腰三角形,頂點為P(﹣3,2),求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣alnx,(a∈R).
(1)討論函數(shù)f(x)在定義域內(nèi)的極值點的個數(shù);
(2)設g(x)=﹣ ,若不等式f(x)>g(x)對任意x∈[1,e]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= ,其中a∈R.
(1)若a=1,f(x)的定義域為區(qū)間[0,3],求f(x)的最大值和最小值;
(2)若f(x)的定義域為區(qū)間(0,+∞),求a的取值范圍,使f(x)在定義域內(nèi)是單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=1+lnx﹣ ,其中k為常數(shù).
(1)若k=0,求曲線y=f(x)在點(1,f(1))處的切線方程.
(2)若k=5,求證:f(x)有且僅有兩個零點;
(3)若k為整數(shù),且當x>2時,f(x)>0恒成立,求k的最大值.

查看答案和解析>>

同步練習冊答案