雙曲線與橢圓的焦點(diǎn)相同,若過右焦點(diǎn)F且傾斜角為60°的直線與雙曲線的右支有兩個(gè)不同交點(diǎn),則此雙曲線實(shí)半軸長的取值范圍是( )
A.(2,4)
B.(2,4]
C.[2,4)
D.(2,+∞)
【答案】分析:要使直線與雙曲線有兩個(gè)交點(diǎn),需使雙曲線的其中一漸近線方程的斜率小于直線的斜率,即 <1,求得a和b的不等式關(guān)系,進(jìn)而根據(jù)b=轉(zhuǎn)化成a和c的不等式關(guān)系,求得離心率的一個(gè)范圍,最后根據(jù)雙曲線的離心率大于1,綜合可得求得e的范圍.
解答:解:橢圓的半焦距c=4.
要使直線與雙曲線有兩個(gè)交點(diǎn),需使雙曲線的其中一漸近線方程的斜率小于直線的斜率,
<tan60°=
即b<a
a,
整理得c<2a
∴a>2,
又a<c=4
則此雙曲線實(shí)半軸長的取值范圍是(2,4)
故選A.
點(diǎn)評(píng):本題主要考查了雙曲線的簡單性質(zhì)、圓錐曲線的共同特征.在求雙曲線實(shí)半軸長的取值范圍時(shí),注意其值要小于4.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)圓錐曲線上任意兩點(diǎn)連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦.已知橢圓C:
x2
4
+y2=1

(1)過橢圓C的右焦點(diǎn)作一條垂直于x軸的垂軸弦MN,求MN的長度;
(2)若點(diǎn)P是橢圓C上不與頂點(diǎn)重合的任意一點(diǎn),MN是橢圓C的短軸,直線MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0)(如圖),求xE?xF的值;
(3)在(2)的基礎(chǔ)上,把上述橢圓C一般化為
x2
a2
+
y2
b2
=1(a>b>0)
,MN是任意一條垂直于x軸的垂軸弦,其它條件不變,試探究xE?xF是否為定值?(不需要證明);請你給出雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
中相類似的結(jié)論,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以圓錐曲線過焦點(diǎn)且垂直于軸的弦為直徑的圓與準(zhǔn)線的關(guān)系是相離,該圓錐曲線是(    )

A.橢圓           B.雙曲線              C.拋物線         D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的方程為x2-y2=4,橢圓E以雙曲線C的頂點(diǎn)為焦點(diǎn),且橢圓右頂點(diǎn)A到雙曲線C的漸近線距離為3.

(1)求橢圓E的方程;

(2)若直線y=x與橢圓E交于M、N兩點(diǎn)(M點(diǎn)在第一象限),P、Q是橢圓上不同于M的相異兩點(diǎn),并且∠PMQ的平分線垂直于x軸.試求直線PQ的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的方程為x2-y2=4.橢圓E以雙曲線C的頂點(diǎn)為焦點(diǎn),且其右頂點(diǎn)A到雙曲線C的漸近線距離為.

(1)求橢圓E的方程;

(2)若直線y=x與橢圓E交于M、N兩點(diǎn)(M點(diǎn)在第一象限),P、Q是橢圓上不同于M的相異兩點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),并且滿足(+)·(-)=0.試求直線PQ的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省廣州市番禺區(qū)仲元中學(xué)高三(下)2月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

圓錐曲線上任意兩點(diǎn)連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦.已知橢圓C:
(1)過橢圓C的右焦點(diǎn)作一條垂直于x軸的垂軸弦MN,求MN的長度;
(2)若點(diǎn)P是橢圓C上不與頂點(diǎn)重合的任意一點(diǎn),MN是橢圓C的短軸,直線MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0)(如圖),求xE?xF的值;
(3)在(2)的基礎(chǔ)上,把上述橢圓C一般化為,MN是任意一條垂直于x軸的垂軸弦,其它條件不變,試探究xE?xF是否為定值?(不需要證明);請你給出雙曲線中相類似的結(jié)論,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案