已知的離心率為,直線l:x-y=0與以原點(diǎn)為圓心,以橢圓C1的短半軸長為半徑的圓相切,曲線C2以x軸為對(duì)稱軸.
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)F2,直線l1過點(diǎn)F1且垂直于橢圓的長軸,曲線C2上任意一點(diǎn)M到l1距離與MF2相等,求曲線C2的方程.
(3)若A(x1,2),C(x,y),是C2上不同的點(diǎn),且AB⊥BC,求y的取值范圍.
【答案】分析:(1)根據(jù)離心率求得a和c的關(guān)系,進(jìn)而根據(jù)直線l與圓相切根據(jù)圓心到直線的距離為半徑求得b,進(jìn)而求得a,則橢圓方程可得.
(2))根據(jù)|MP|=|MF2|可知?jiǎng)狱c(diǎn)M到定直線l1:x=-1的距離等于它的定點(diǎn)F2(1,0)的距離,進(jìn)而根據(jù)拋物線的定義可知?jiǎng)狱c(diǎn)M的軌跡是以l1為準(zhǔn)線,F(xiàn)2為焦點(diǎn)的拋物線,根據(jù)定點(diǎn)直線l1的距離求得拋物線方程中的p,則拋物線方程可得.
(3)由(1)可求得A點(diǎn)坐標(biāo),設(shè)出B點(diǎn)和C點(diǎn)坐標(biāo),表示出根據(jù)AB⊥BC可知=0,整理得關(guān)于y2的一元二次方程根據(jù)判別式大于等于0求得y的范圍.
解答:解:(1),
,
∴2a2=3b2
∵直線l:x-y+2=0與圓x2+y2=b2相切,
=b,
∴b=,b2=2,
∴a2=3.
∴橢圓C1的方程是
(2)∵|MP|=|MF2|,
∴動(dòng)點(diǎn)M到定直線l1:x=-1的距離等于它的定點(diǎn)F2(1,0)的距離
∴動(dòng)點(diǎn)M的軌跡是以l1為準(zhǔn)線,F(xiàn)2為焦點(diǎn)的拋物線,
,p=2,
∴點(diǎn)M的軌跡C2的方程為y2=4x.
(3)由(1)知A(1,2),,y2≠2,①則,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125004834597553/SYS201310251250048345975021_DA/12.png">,
整理得y22+(y+2)y2+16+2y=0,則此方程有解,
∴△=(y+2)2-4•(16+2y)≥0解得y≤-6或y≥10,又檢驗(yàn)條件①:
∵y2=2時(shí)y=-6,不符合題意.
∴點(diǎn)C的縱坐標(biāo)y的取值范圍是(-∞,-6)∪[10,+∞).
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的綜合問題.涉及了圓錐曲線方程,方程的根,與圓錐曲線性質(zhì)有關(guān)的量的取值范圍等問題,是近幾年高考的趨向.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年山東省濟(jì)南外國語學(xué)校高三(下)3月質(zhì)量檢測(cè)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知的離心率為,直線l:x-y=0與以原點(diǎn)為圓心,以橢圓C1的短半軸長為半徑的圓相切,曲線C2以x軸為對(duì)稱軸.
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)F2,直線l1過點(diǎn)F1且垂直于橢圓的長軸,曲線C2上任意一點(diǎn)M到l1距離與MF2相等,求曲線C2的方程.
(3)若A(x1,2),C(x,y),是C2上不同的點(diǎn),且AB⊥BC,求y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年浙江省舟山市七校高三(下)3月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知的離心率為,直線l:x-y=0與以原點(diǎn)為圓心,以橢圓C1的短半軸長為半徑的圓相切,曲線C2以x軸為對(duì)稱軸.
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)F2,直線l1過點(diǎn)F1且垂直于橢圓的長軸,曲線C2上任意一點(diǎn)M到l1距離與MF2相等,求曲線C2的方程.
(3)若A(x1,2),C(x,y),是C2上不同的點(diǎn),且AB⊥BC,求y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年廣東省汕頭市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知的離心率為,直線l:x-y=0與以原點(diǎn)為圓心,以橢圓C1的短半軸長為半徑的圓相切,曲線C2以x軸為對(duì)稱軸.
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)F2,直線l1過點(diǎn)F1且垂直于橢圓的長軸,曲線C2上任意一點(diǎn)M到l1距離與MF2相等,求曲線C2的方程.
(3)若A(x1,2),C(x,y),是C2上不同的點(diǎn),且AB⊥BC,求y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考考試策略專題訓(xùn)練(三)(解析版) 題型:解答題

已知的離心率為,直線l:x-y=0與以原點(diǎn)為圓心,以橢圓C1的短半軸長為半徑的圓相切,曲線C2以x軸為對(duì)稱軸.
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)F2,直線l1過點(diǎn)F1且垂直于橢圓的長軸,曲線C2上任意一點(diǎn)M到l1距離與MF2相等,求曲線C2的方程.
(3)若A(x1,2),C(x,y),是C2上不同的點(diǎn),且AB⊥BC,求y的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案