在一個盒子中,放有標號分別為1,2,3的三張卡片,現(xiàn)從這個盒子中,有放回地先后抽得兩張卡片的標號分別為x、y,記ξ=|x-2|+|y-x|.
(1)求隨機變量ξ的最大值,并求事件“ξ取得最大值”的概率;
(2)求隨機變量ξ的分布列.
(1)3,;(2)見解析
解析試題分析:(1)通過分析x,y的取值情況,先求出|x-2|與|y-x|的最大值,從而求出ξ的最大值,分析ξ取最大值時,x,y的取值情況及x,y所有取值情況,根據古典概型公式求出所求事件的概率;(2)先分析ξ的所有可能取值及取該值時x,y的取值情況,根據古典概型公式求出分布列.
試題解析:(1)∵x,y可能的取值為1,2,3,
∴|x-2|≤1,|y-x|≤2,
∴ξ≤3,且當x=1,y=3或x=3,y=1時,ξ=3.
因此,隨機變量ξ的最大值為3.(3分)
∵有放回抽兩張卡片的所有情況有3×3=9種,
∴P(ξ=3)=.
故隨機變量ξ的最大值為3,事件“ξ取得最大值”的概率為.(6分)
(2)ξ的所有取值為0,1,2,3.
∵ξ=0時,只有x=2,y=2這一種情況,
ξ=1時,有x=1,y=1或x=2,y=1或x=2,y=3或x=3,y=3四種情況,
ξ=2時,有x=1,y=2或x=3,y=2兩種情況.
ξ=3時,有x=1,y=3或x=3,y=1兩種情況.
∴P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,
P(ξ=3)=.(10分)
則隨機變量ξ的分布列為:ξ 0 1 2 3 P
考點:古典概型,分類整合思想
科目:高中數(shù)學 來源: 題型:解答題
一紙箱中放有除顏色外,其余完全相同的黑球和白球,其中黑球2個,白球3個.
(Ⅰ)從中同時摸出兩個球,求兩球顏色恰好相同的概率;
(Ⅱ)從中摸出一個球,放回后再摸出一個球,求兩球顏色恰好不同的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲乙兩班進行消防安全知識競賽,每班出3人組成甲乙兩支代表隊,首輪比賽每人一道必答題,答對則為本隊得1分,答錯不答都得0分,已知甲隊3人每人答對的概率分別為,乙隊每人答對的概率都是.設每人回答正確與否相互之間沒有影響,用表示甲隊總得分.
(I)求隨機變量的分布列及其數(shù)學期望E;
(Ⅱ)求在甲隊和乙隊得分之和為4的條件下,甲隊比乙隊得分高的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲、乙、丙三人按下面的規(guī)則進行乒乓球比賽:第一局由甲、乙參加而丙輪空,
以后每一局由前一局的獲勝者與輪空者進行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進行到其中一人連勝兩局或打滿6局時停止.設在每局中參賽者勝負的概率均為,且各局勝負相互獨立.求:
(1)打滿3局比賽還未停止的概率;
(2)比賽停止時已打局數(shù)的分別列與期望E.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲、乙兩人參加某電視臺舉辦的答題闖關游戲,按照規(guī)則,甲先從6道備選題中一次任意抽取3道題,獨立作答,然后由乙回答剩余3題,每人答對其中的2題就停止答題,即闖關成功。已知6道備選題中,甲能答對其中的4道題,乙答對每道題的概率都是.
(1)求甲、乙至少有一人闖關成功的概率;
(2)設甲答對題目的個數(shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某地區(qū)對12歲兒童瞬時記憶能力進行調查.瞬時記憶能力包括聽覺記憶能力與視覺記憶能力.某班學甲、乙兩人參加一次英語口語考試,已知在備選的10道試題中,甲能答對其中的6題,乙能答對其中的8題.規(guī)定每次考試都從備選題中隨機抽出3題進行測試,至少答對2題才算合格.(1)求甲、乙兩人考試均合格的概率;(2)求甲答對試題數(shù)的概率分布及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某種玫瑰花,進貨商當天以每支1元從鮮花批發(fā)商店購進,以每支2元售出.若當天賣不完,剩余的玫瑰花批發(fā)商店以每支0.5元的價格回收.根據市場統(tǒng)計,得到這個季節(jié)的日銷售量X(單位:支)的頻率分布直方圖(如圖所示),將頻率視為概率.(12分)
(1)求頻率分布直方圖中的值;
(2)若進貨量為(單位支),當n≥X時,求利潤Y的表達式;
(3)若當天進貨量n=400,求利潤Y的分布列和數(shù)學期望E(Y)(統(tǒng)計方法中,同一組數(shù)據常用該組區(qū)間的中點值作為代表).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
(理)一個均勻小正方體的六個面中,三個面上標以數(shù)0,兩個面上標以數(shù)1,一個面上標以數(shù)2,將這個小正方體拋擲2次,則向上的數(shù)之積的數(shù)學期望是
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com