已知F是拋物線的焦點(diǎn), A、B是拋物線上兩點(diǎn),若是正三角形,則 的邊長(zhǎng)為        ;

試題分析:顯然,A、B兩點(diǎn)關(guān)于x軸對(duì)稱。令,則。又拋物線的焦點(diǎn),所以由得,,解得,所以則 的邊長(zhǎng)為。
點(diǎn)評(píng):本題容易出現(xiàn)差錯(cuò)是在解方程,它可化為一元二次方程,由于含有根式,因而要用到求根公式,最后還要注意。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點(diǎn),且。 
(1) 求拋物線方程;
(2) 在x軸上是否存在一點(diǎn)C,使得三角形ABC是正三角形? 若存在,求出點(diǎn)C的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,橢圓、與雙曲線的離心率分別是、、, 則、、、的大小關(guān)系是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線的焦點(diǎn)到雙曲線的漸近線的距離為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
設(shè)雙曲線的方程為,、為其左、右兩個(gè)頂點(diǎn),是雙曲線 上的任意一點(diǎn),作,,垂足分別為,交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)設(shè)、的離心率分別為、,當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)軸上,準(zhǔn)線與圓相切.

(Ⅰ)求拋物線的方程;
(Ⅱ)若點(diǎn)在拋物線上,且,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知a,b為正常數(shù),F(xiàn)1,F(xiàn)2是兩個(gè)定點(diǎn),且|F1F2|=2a(a是正常數(shù)),動(dòng)點(diǎn)P滿足|PF1|+|PF2|=a2+1,則動(dòng)點(diǎn)P的軌跡是(     )
A.橢圓B.線段C.橢圓或線段D.直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題14分)拋物線與直線相交于兩點(diǎn),且
(1)求的值。
(2)在拋物線上是否存在點(diǎn),使得的重心恰為拋物線的焦點(diǎn),若存在,求點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)點(diǎn)F1、F2為雙曲線C:的左、右焦點(diǎn),P為C上一點(diǎn),若△PF1F2的面積為6,則=                。

查看答案和解析>>

同步練習(xí)冊(cè)答案