【題目】下列命題正確的是(

A.經(jīng)過任意三點有且只有一個平面.

B.過點有且僅有一條直線與異面直線垂直.

C.一條直線與一個平面平行,它就和這個平面內(nèi)的任意一條直線平行.

D.與平面相交,則公共點個數(shù)為有限個.

【答案】B

【解析】

根據(jù)公理、異面直線垂直、線面平行、面面相交的知識對選項進行分析,由此確定正確選項.

對于A選項,如果這三個點共線,經(jīng)過這三個點不止一個平面,所以A選項錯誤.

對于B選項,過上一點,直線確定平面,過作直線,則,則,而,所以,由于過平面外一點只能作平面一條垂線,所以B選項正確.

對于C選項,一條直線與一個平面平行,它就和這個平面內(nèi)的直線平行或異面,所以C選項錯誤.

對于D選項,面與平面相交,則公共點個數(shù)為無限個,都在交線上,故D選項錯誤.

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某體育公司對最近6個月內(nèi)的市場占有率進行了統(tǒng)計,結果如表:

(1)可用線性回歸模型擬合之間的關系嗎?如果能,請求出關于的線性回歸方程,如果不能,請說明理由;

(2)公司決定再采購,兩款車擴大市場,,兩款車各100輛的資料如表:

平均每輛車每年可為公司帶來收入500元,不考慮采購成本之外的其他成本,假設每輛車的使用壽命都是整數(shù)年,用每輛車使用壽命的頻率作為概率,以每輛車產(chǎn)生利潤的期望值作為決策依據(jù),應選擇采購哪款車型?

參考數(shù)據(jù):,,

參考公式:相關系數(shù);

回歸直線方程,其中,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),在一個周期內(nèi)的圖象如下圖所示.

1)求函數(shù)的解析式;

2)設,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍和這兩個根的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列滿足:,

1)求數(shù)列的通項公式;

2)是否存在正整數(shù),使得?若存在,求的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某海濱城市附近海面有一臺風,據(jù)監(jiān)測,當前臺風中心位于城市O(如圖)的東偏南方向300km的海面P處,并以20km/h的速度向西偏北方向移動,臺風侵襲的范圍為圓形區(qū)域,當前半徑為60km,并以10km/h的速度不斷增大,問幾小時后該城市開始受到臺風的侵襲?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是半圓的直徑,為圓周上一點,平面,,,,.

1)求證:平面平面

2)在線段上是否存在點,且使得平面?若存在,求出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面為正方形,,分別是,的中點.

1)在平面內(nèi)求一點,使平面,并證明你的結論;

2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項等比數(shù)列滿足,若存在兩項,使得,則的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某媒體為調(diào)查喜愛娛樂節(jié)目A是否與觀眾性別有關,隨機抽取了30名男性和30名女性觀眾,抽查結果用等高條形圖表示如圖:

根據(jù)該等高條形圖,完成下列2×2列聯(lián)表,并用獨立性檢驗的方法分析,能否在犯錯誤的概率不超過0.05的前提下認為喜歡娛樂節(jié)目A與觀眾性別有關?

喜歡節(jié)目A

不喜歡節(jié)目A

總計

男性觀眾

女性觀眾

總計

60

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案