直線l:y=kx+1與雙曲線C:2x2-y2=1的右支交于不同的兩點A、B.

(1)求實數(shù)k的取值范圍.

(2)是否存在實數(shù)k,使得以線段AB為直徑的圓經(jīng)過雙曲線C的右焦點F2?若存在,求出k的值;若不存在,請說明理由.

1、k的取值范圍為-2<k<-

2、k=-


解析:

(1)由得(k2-2)x2+2kx+2=0(*).這個關(guān)于x的二次方程有兩個不等正根.

-2<k<-.

故所求k的取值范圍為-2<k<-.

(2)設A、B兩點的坐標分別為(x1,y1)、(x2,y2).

則由(*)得

若存在實數(shù)k,使得以線段AB為直徑的圓經(jīng)過雙曲線C的右焦點F2(c,0),

,即(x1-c)·(x2-c)+y1y2=0,

即x1x2-c(x1+x2)+c2+(kx1+1)(kx2+1)=0.

得(k2+1)x1x2+(k-c)(x1+x2)+c2+1=0.                                               ②

將①代入②中得(k2+1)·+(k-c)·+c2+1=0.

又c2=,

∴5k2+2k-6=0,得k=-或k=(-2,-).

由此,k=-即為所求.

故存在實數(shù)k=-使原命題成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

直線l:y=kx+1與雙曲線C:2x2-y2=1的右支交于不同的兩點A、B.

(1)求實數(shù)k的取值范圍;

(2)是否存在實數(shù)k,使得以線段AB為直徑的圓經(jīng)過雙曲線C的右焦點F?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線l:y=kx-1與直線x+y-1=0的交點位于第一象限,則實數(shù)k的取值范圍是

A.(-∞,-1)             B.(-∞,-1]              C.(1,+∞)                D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(20)直線l:y=kx+1與雙曲線C:2x2y2=1的右支交于不同的兩點A、B.

(Ⅰ)求實數(shù)k的取值范圍;

(Ⅱ)是否存在實數(shù)k,使得以線段AB為直徑的圓經(jīng)過雙曲線C的右焦點F?若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=kx-1與雙曲線3x2-y2=1交于A、B兩點,求弦AB中點P的軌跡方程.

查看答案和解析>>

同步練習冊答案