精英家教網 > 高中數學 > 題目詳情

【題目】在正四棱錐V﹣ABCD中(底面是正方形,側棱均相等),AB=2,VA= ,且該四棱錐可繞著AB任意旋轉,旋轉過程中CD∥平面α,則正四棱錐V﹣ABCD在平面α內的正投影的面積的取值范圍是(
A.[2,4]
B.(2,4]
C.[ ,4]
D.[2,2 ]

【答案】A
【解析】解:由題意,側面上的高為 = ,∴側面的面積為 =2,
又由于底面的面積為2×2=4,
當正四棱錐的高平行于面時面積最小是2,
∴正四棱錐V﹣ABCD在面α內的投影面積的取值范圍是[2,4],
故選:A.
【考點精析】根據題目的已知條件,利用棱錐的結構特征的相關知識可以得到問題的答案,需要掌握側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2﹣alnx(a∈R).
(1)若曲線f(x)在(1,f(1))處的切線與直線y=﹣x+5垂直,求實數a的值.
(2)x0∈[1,e],使得 ≤0成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在R上的函數f(x)滿足:f′(x)﹣f(x)=xex , 且f(0)= ,則 的最大值為(
A.0
B.
C.1
D.2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,過右焦點作垂直于橢圓長軸的直線交橢圓于兩點,且為坐標原點.

(1)求橢圓的方程;

(2) 設直線與橢圓相交于兩點,若.

①求的值;

②求的面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】本市某玩具生產公司根據市場調查分析,決定調整產品生產方案,準備每天生產, 三種玩具共100個,且種玩具至少生產20個,每天生產時間不超過10小時,已知生產這些玩具每個所需工時(分鐘)和所獲利潤如表:

玩具名稱

工時(分鐘)

5

7

4

利潤(元)

5

6

3

(Ⅰ)用每天生產種玩具個數種玩具表示每天的利潤(元);

(Ⅱ)怎樣分配生產任務才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設Sn是數列{an}的前n項和,且a1=1,an+1=﹣SnSn+1 , 則使 取得最大值時n的值為明

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= x2+(a+1)x+2ln(x﹣1).
(1)若曲線y=f(x)在點(2,f(2))處的切線與直線2x﹣y+1=0平行,求出這條切線的方程;
(2)討論函數f(x)的單調區(qū)間;
(3)若對于任意的x∈(1,+∞),都有f(x)<﹣2,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,

時,求的值;

時,是否存在正整數n,r,使得、、依次構成等差數列?并說明理由;

時,求的值m表示

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設斜率不為0的直線與拋物線交于兩點,與橢圓交于兩點,記直線的斜率分別為.

(1)求證:的值與直線的斜率的大小無關;

(2)設拋物線的焦點為,若,求面積的最大值.

查看答案和解析>>

同步練習冊答案