Processing math: 0%
15.把函數(shù)y=sin(x+\frac{π}{6})圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),再將圖象向右平移\frac{π}{3}個(gè)單位,那么所得圖象的一條對稱軸為( �。�
A.x=\frac{π}{4}B.x=\frac{π}{2}C.x=\frac{π}{6}D.x=π

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,求得所得圖象的一條對稱軸方程.

解答 解:把函數(shù)y=sin(x+\frac{π}{6})圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),可得y=sin(\frac{1}{2}x+\frac{π}{6})圖象;
再將圖象向右平移\frac{π}{3}個(gè)單位,可得y=sin[\frac{1}{2}(x-\frac{π}{3})+\frac{π}{6}]=sin\frac{1}{2}x的圖象.
\frac{1}{2}x=kπ+\frac{π}{2},求得x=2kπ+π,k∈Z,故所得圖象的對稱軸方程為 x=2kπ+π,k∈Z.
結(jié)合所給的選項(xiàng),
故選:D.

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)過點(diǎn)(2,\sqrt{3}),且它的離心率e=\frac{1}{2}.直線l:y=kx+t與橢圓C1交于M、N兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l與圓C2:(x-1)2+y2=1相切,橢圓上一點(diǎn)P滿足\overrightarrow{OM}+\overrightarrow{ON}=λ\overrightarrow{OP},求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A、B、C對邊分別是a、b、c,且滿足2\overrightarrow{AB}•\overrightarrow{AC}={a^2}-{(b-c)^2}
(Ⅰ)求角A的大小
(Ⅱ)若a=4,△ABC的面積為4\sqrt{3},求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l的參數(shù)方程為\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sinθ-2cosθ,若直線l與曲線C交于A、B兩點(diǎn),求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.計(jì)算機(jī)執(zhí)行如圖的程序段后,輸出的結(jié)果是(  )
A.1,4B.4,1C.4,-2D.1,-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)M是橢圓\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1上的一點(diǎn),F(xiàn)1、F2為焦點(diǎn),∠F1MF2=\frac{π}{6},則△MF1F2的面積為16(2-\sqrt{3}).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若函數(shù)f(x)是定義在R上的函數(shù),f(x)關(guān)于x=2對稱,且在區(qū)間[2,+∞)上是單調(diào)增函數(shù).如果實(shí)數(shù)t滿足f(lnt)+f(4-lnt)<f(1)+f(3)時(shí),那么t的取值范圍是e<t<e3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ln(1+x2)+ax(a≤0)
(1)若f(x)在x=0處取極值,求a的值;
(2)討論f(x)的單調(diào)性;
(3)證明:(1+\frac{1}{3})(1+\frac{1}{9})…(1+\frac{1}{3^n})<e\sqrt{e}(  e為自然對數(shù)的底數(shù),n∈N*)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)函數(shù)f(x)=2x+3,g(x+2)=f(x),則g(2)的值是3.

查看答案和解析>>

同步練習(xí)冊答案