【題目】已知奇函數(shù)f(x),x∈(0,+∞),f(x)=lgx,則不等式f(x)<0的解集是

【答案】(﹣∞,﹣1)∪(0,1)
【解析】解:x∈(0,+∞),f(x)=lgx,不等式f(x)<0化為lgx<0,∴0<x<1.
當(dāng)x<0時(shí),∵函數(shù)f(x)是奇函數(shù),∴f(x)=﹣f(﹣x)=﹣lg(﹣x),
由f(x)<0即﹣lg(﹣x)<0,化為lg(﹣x)>0,∴﹣x>1,解得x<﹣1.
綜上可得不等式f(x)<0的解集是:(﹣∞,﹣1)∪(0,1).
所以答案是:(﹣∞,﹣1)∪(0,1).
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)奇偶性的性質(zhì)和對(duì)數(shù)的運(yùn)算性質(zhì),需要了解在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇;①加法:②減法:③數(shù)乘:才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài).一個(gè)共享單車企業(yè)在某個(gè)城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:千輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過(guò)程中進(jìn)行了統(tǒng)計(jì),得出相關(guān)數(shù)據(jù)見(jiàn)下表:

租用單車數(shù)量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .

(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):

①完成下表(計(jì)算結(jié)果精確到0.1)(備注: ,稱為相應(yīng)于點(diǎn)的殘差(也叫隨機(jī)誤差));

租用單車數(shù)量 (千輛)

2

3

4

5

8

每天一輛車平均成本 (元)

3.2

2.4

2

1.9

1.7

模型甲

估計(jì)值

2.4

2.1

1.6

殘差

0

-0.1

0.1

模型乙

估計(jì)值

2.3

2

1.9

殘差

0.1

0

0

②分別計(jì)算模型甲與模型乙的殘差平方和,并通過(guò)比較的大小,判斷哪個(gè)模型擬合效果更好.

(2)這個(gè)公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放.根據(jù)市場(chǎng)調(diào)查,這個(gè)城市投放8千輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬(wàn)輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6.問(wèn)該公司應(yīng)該投放8千輛還是1萬(wàn)輛能獲得更多利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算一天中一輛單車的平均成本,利潤(rùn)=收入-成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線, ,則下列說(shuō)法正確的是( )

A. 上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線

B. 上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線

C. 把曲線向右平移個(gè)單位長(zhǎng)度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到曲線

D. 把曲線向右平移個(gè)單位長(zhǎng)度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,a2=2,an+2=(1+cos2 )an+sin2 ,則該數(shù)列的前12項(xiàng)和為(
A.211
B.212
C.126
D.147

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12)

設(shè)函數(shù)有兩個(gè)極值點(diǎn),且

I)求的取值范圍,并討論的單調(diào)性;

II)證明: w.w.w..c.o.m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)有零點(diǎn),其實(shí)數(shù)的取值范圍.

(Ⅱ)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn)或求值:
(1)(2 0+22×(2 ﹣(
(2)2(lg 2+lg lg5+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,已知點(diǎn)D在邊AB上,AD=3DB

, ,BC=13.

(1)求的值;

(2)求CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+b滿足f(1)=0,且在x=2時(shí)函數(shù)取得極值.
(1)求a,b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)在區(qū)間[0,t](t>0)上的最大值g(t)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案