【題目】某輪船公司年初以200萬元購進一艘輪船,以每年40萬元的價格出租給海運公司.輪船公司負責輪船的維護,第一年維護費為4萬元,隨著輪船的使用與磨損,以后每年的維護費比上一年多2萬元,同時該輪船第年末可以以萬元的價格出售.

1)寫出輪船公司到第年末所得總利潤萬元關于的函數(shù)解析式,并求的最大值;

2)為使輪船公司年平均利潤最大,輪船公司應在第幾年末出售輪船?

【答案】(1) ,191萬元 (2) 7年末

【解析】

1)總利潤等于總收入減去總支出,由題意計算出總維護費和總收入,即可得到函數(shù)解析式,再由二次函數(shù)的性質及的取值范圍,可得最大值。

2)記輪船公司年平均利潤為(萬元),則,再用基本不等式分析最值.

解:(1)輪船公司年的總維護費為

總收入為

所以輪船公司到第年末所得總利潤,

因為,所以(萬元).

2)記輪船公司年平均利潤為(萬元),則.

因為(當且僅當時,等號成立),所以.

故為使輪船公司年平均利潤最大,輪船公司應在第7年末出售輪船.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】團體購買公園門票,票價如下表:

購票人數(shù)

1~50

51~100

100以上

門票價格

13元/人

11元/人

9元/人

現(xiàn)某單位要組織其市場部和生產(chǎn)部的員工游覽該公園,若按部門作為團體,選擇兩個不同的時間分別購票游覽公園,則共需支付門票費為1290元;若兩個部門合在一起作為一個團體,同一時間購票游覽公園,則需支付門票費為990元,那么這兩個部門的人數(shù)之差為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAABPABC,ABBC,PAABBC=2,D為線段AC的中點,E為線段PC上一點.

(1)求證:PABD;

(2)求證:平面BDE平面PAC;

(3)PA平面BDE時,求三棱錐EBCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若恒成立,求處的切線方程;

(2)若有且只有兩個整數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市的公交公司為了方便市民出行,科學規(guī)劃車輛投放,在一個人員密集流動地段增設一個起點站,為了研究車輛發(fā)車間隔時間與乘客等候人數(shù)之間的關系,經(jīng)過調查得到如下數(shù)據(jù):

間隔時間(分鐘)

10

11

12

13

14

15

等候人數(shù)(人)

23

25

26

29

28

31

調查小組先從這6組數(shù)據(jù)中選取4組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應的等候人數(shù),再求與實際等候人數(shù)的差,若差值的絕對值不超過1,則稱所求方程是恰當回歸方程”.

1)若選取的是后面4組數(shù)據(jù),求關于的線性回歸方程

2)判斷(1)中的方程是否是恰當回歸方程;

3)為了使等候的乘客不超過35人,試用(1)中方程估計間隔時間最多可以設置為多少(精確到整數(shù))分鐘?

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為: ,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,四邊形為菱形,且,分別為棱,的中點.

(1)求證:平面;

(2)若平面,,求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年“十一”期間,高速公路車輛較多.某調查公司在一服務區(qū)從七座以下小型汽車中按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調查,將他們在某段高速公路的車速()分成六段: , , , , ,后得到如圖的頻率分布直方圖.

(1)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計值;

(2)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是邊長為1的正方形,PA⊥底面ABCD,PA1,點M是棱PC上的一點,且AMPB

1)求三棱錐CPBD的體積;

2)證明:AM⊥平面PBD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線

(1)求曲線在點處的切線方程;

(2)求曲線過點的切線方程

查看答案和解析>>

同步練習冊答案