分析:(Ⅰ)由s
n得到s
n+1,兩者相減得到
an+1 =(an+1 -an )即a
n+1=3a
n,得到公比為3,令n=1,求出首項(xiàng),即可求出等比數(shù)列的通項(xiàng);
(Ⅱ)由(Ⅰ)知b
n=log
3a
n=n,所以列舉出數(shù)列{a
nb
n}的前n項(xiàng)和T
n,利用錯(cuò)位相減法得到其之和.
解答:解:(Ⅰ)因?yàn)?span id="tbedfpv" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
Sn =
(
an -1),n
∈N+,所以
Sn+1 =(an+1 -1).
兩式相減,得
Sn+1 -Sn =(an+1 -an );,即
an+1 =(an+1 -an )∴a
n+1=3a
n,n∈N
+.
又
s1 =(a1 -1);,即
a1 =(a1 -1);,所以a
1=3.
∴{a
n}是首項(xiàng)為3,公比為3的等比數(shù)列.從而{a
n}的通項(xiàng)公式是{a
n=3
n,n∈N
+;
(Ⅱ)由(Ⅰ)知b
n=log
3a
n=n,設(shè)數(shù)列{a
nb
n}的前n項(xiàng)和為T(mén)
n,
則T
n=1×3+2×3
2+3×3
3++n•3
n,3T
n
=1×3
2+2×3
3+3×3
4++(n-1)•3
n+n•3
n+1,
兩式相減得-2T
n=1×3+1×3
2+1×3
3++1×3
n-n•3
n+1=
(3n-1)-n•3n+1,
所以
Tn=•3n+1+.
點(diǎn)評(píng):考查學(xué)生掌握用錯(cuò)位相減法對(duì)數(shù)列求和的方法,應(yīng)用等比數(shù)列的通項(xiàng)公式解決問(wèn)題的能力.