A. | (x+2)2+(y-6)2=1 | B. | (x-6)2+(y+2)2=1 | C. | (x-1)2+(y-3)2=1 | D. | (x+1)2+(y+3)2=1 |
分析 設(shè)圓心(-2,6)關(guān)于直線x-y+5=0對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為(m,n),利用垂直以及中點(diǎn)在軸上,求得m,n的值,可得對(duì)稱(chēng)圓的方程.
解答 解:設(shè)圓心(-2,6)關(guān)于直線x-y+5=0對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為(m,n),
則由$\left\{\begin{array}{l}{\frac{n-6}{m+2}•1=-1}\\{\frac{m-2}{2}-\frac{n+6}{2}+5=0}\end{array}\right.$求得m=1,n=3,故對(duì)稱(chēng)圓的圓心為(1,3),對(duì)稱(chēng)圓的半徑和原來(lái)的圓一樣,
故對(duì)稱(chēng)圓的方程為(x-1)2+(y-3)2=1,
故選C.
點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系,求一個(gè)圓關(guān)于直線的對(duì)稱(chēng)圓的方程的方法,關(guān)鍵是求出圓心關(guān)于直線的對(duì)稱(chēng)點(diǎn)的坐標(biāo),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 內(nèi)切 | B. | 外切 | C. | 相交 | D. | 相離 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0<a<b<1<c<d | B. | 0<a<b<1<d<c | C. | 1<a<b<c<d | D. | 0<b<a<1<d<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若命題p,¬q都是真命題,則命題“p∧q”為真命題 | |
B. | 命題“若xy=0,則x=0或y=0”的否命題為“若xy≠0,則x≠0或y≠0” | |
C. | “x=-1”是“x2-5x-6=0”的必要不充分條件 | |
D. | 命題“?x∈R,2x>0”的否定是“?x0∈R,2${\;}^{{x}_{0}}$≤0” |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com