【題目】如圖,在四面體ABCD中,CB=CD,AD⊥BD,點E,F分別是AB,BD的中點. 求證:
(Ⅰ)直線EF∥平面ACD;
(Ⅱ)平面EFC⊥平面BCD.
【答案】證明:(Ⅰ)∵點E,F分別是AB,BD的中點. ∴EF∥AD,
又EF面ACD,AD面ACD,
∴EF∥面ACD;
(Ⅱ)∵CB=CD,點F是BD的中點.
∴BD⊥CF,
又AD⊥BD,EF∥AD,
∴EF⊥BD,
CF∩EF=F,
∴BD⊥面CEF,
BD面BCD,
∴平面EFC⊥平面BCD
【解析】(Ⅰ)只要證明EF∥AD,利用線面平行的判定解答;(Ⅱ)只要證明BD⊥平面EFC即可.
【考點精析】根據題目的已知條件,利用直線與平面平行的判定和平面與平面垂直的判定的相關知識可以得到問題的答案,需要掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一個平面過另一個平面的垂線,則這兩個平面垂直.
科目:高中數學 來源: 題型:
【題目】對于函數f(x)的定義域中任意的x1、x2(x1≠x2),有如下結論:
①f(x1+x2)=f(x1)f(x2);
②f(x1x2)=f(x1)+f(x2);
③ >0;
④f( )< .
當f(x)=2x時,上述結論中正確的有( )個.
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}中,a1=3,an+1=can+m(c,m為常數)
(1)當c=1,m=1時,求數列{an}的通項公式an;
(2)當c=2,m=﹣1時,證明:數列{an﹣1}為等比數列;
(3)在(2)的條件下,記bn= ,Sn=b1+b2+…+bn , 證明:Sn<1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某保險公司利用簡單隨機抽樣方法,對投保車輛進行抽樣,樣本車輛中每輛車的賠付結果統(tǒng)計如下:
賠付金額(元) | 0 | 1 000 | 2 000 | 3 000 | 4 000 |
車輛數(輛) | 500 | 130 | 100 | 150 | 120 |
(1)若每輛車的投保金額均為2800元,估計賠付金額大于投保金額的概率.
(2)在樣本車輛中,車主是新司機的占10%,在賠付金額為4000元的樣本車輛中,車主是新司機的占20%,估計在已投保車輛中,新司機獲賠金額為4000元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直棱柱ABC﹣A1B1C1中,D,E分別是AB,BB1的中點,AA1=AC=CB= AB. (Ⅰ)證明:BC1∥平面A1CD;
(Ⅱ)求二面角D﹣A1C﹣E的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知指數函數y=g(x)滿足:g(3)=27,定義域為R的函數f(x)= 是奇函數.
(1)確定y=g(x),y=f(x)的解析式;
(2)若h(x)=kx﹣g(x)在(0,1)上有零點,求k的取值范圍;
(3)若對任意的t∈(1,4),不等式f(2t﹣3)+f(t﹣k)>0恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2016年10月,繼微信支付對提現轉賬收費后,支付寶也開始對提現轉賬收費,隨著這兩大目前用戶使用粘度最高的第三方支付開始收費,業(yè)內人士分析,部分對價格敏感的用戶或將回流至傳統(tǒng)銀行體系,某調查機構對此進行調查,并從參與調查的數萬名支付寶用戶中隨機選取200人,把這200人分為3類:認為使用支付寶方便,仍使用支付寶提現轉賬的用戶稱為“類用戶”;根據提現轉賬的多少確定是否使用支付寶的用戶稱為“類用戶”;提前將支付寶賬戶內的資金全部提現,以后轉賬全部通過銀行的用戶稱為“類用戶”,各類用戶的人數如圖所示:
同時把這200人按年齡分為青年人組與中老年人組,制成如圖所示的列聯表:
類用戶 | 非類用戶 | 合計 | |
青年 | 20 | ||
中老年 | 40 | ||
合計 | 200 |
(Ⅰ)完成列聯表并判斷是否有99.5%的把握認為“類用戶與年齡有關”;
(Ⅱ)從這200人中按類用戶、類用戶、類用戶進行分層抽樣,從中抽取10人,再從這10人中隨機抽取4人,求在這4人中類用戶、類用戶、類用戶均存在的概率;
(Ⅲ)把頻率作為概率,從支付寶所有用戶(人數很多)中隨機抽取3人,用表示所選3人中類用戶的人數,求的分布列與期望.
附:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】生產甲乙兩種元件,其質量按檢測指標劃分為:指標大于或者等于82為正品,小于82為次品,現隨機抽取這兩種元件各100件進行檢測,檢測結果統(tǒng)計如下:
測試指標 | |||||
元件甲 | 8 | 12 | 40 | 32 | 8 |
元件乙 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計元件甲、乙為正品的概率;
(2)生產一件元件甲,若是正品可盈利40元,若是次品則虧損5元,生產一件元件乙,若是正品可盈利50元,若是次品則虧損10元.在(1)的前提下:
(i)記為生產1件甲和1件乙所得的總利潤,求隨機變量的分布列和數學期望;
(ii)求生產5件元件乙所獲得的利潤不少于140元的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com