1.在銳角三角形ABC中,BC=2.tan2A+$\sqrt{3}$tanA-6=0.
(I)若sinB=$\frac{\sqrt{3}}{3}$,求AC;
(Ⅱ)若AC=$\sqrt{3}$,求△ABC的面積.

分析 (I)解一元二次方程可求tanA,結合A為銳角,可求A的值,繼而由正弦定理可得AC的值.
(Ⅱ)由正弦定理可得sinB,由B為銳角,利用同角三角函數(shù)基本關系式可求cosB,利用兩角和的正弦函數(shù)公式可求sinC,進而利用三角形面積公式即可計算得解.

解答 解:(I)∵tan2A+$\sqrt{3}$tanA-6=0.
∴解得:tanA=$\sqrt{3}$,或-2$\sqrt{3}$,
又∵A為銳角,
∴tanA=$\sqrt{3}$,A=$\frac{π}{3}$.
∵BC=2,sinB=$\frac{\sqrt{3}}{3}$,
∴由正弦定理可得:$\frac{AC}{\frac{\sqrt{3}}{3}}$=$\frac{2}{\frac{\sqrt{3}}{2}}$,解得:AC=$\frac{4}{3}$.
(Ⅱ)∵BC=2,A=$\frac{π}{3}$,AC=$\sqrt{3}$,
∴由正弦定理可得:sinB=$\frac{ACsinA}{BC}$=$\frac{\sqrt{3}×\frac{\sqrt{3}}{2}}{2}$=$\frac{3}{4}$,
∵B為銳角,可得:cosB=$\sqrt{1-si{n}^{2}B}$=$\frac{\sqrt{7}}{4}$,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{3+\sqrt{21}}{8}$,
∴S△ABC=$\frac{1}{2}$AC•BC•sinC=$\frac{1}{2}×$$\sqrt{3}×2×$$\frac{3+\sqrt{21}}{8}$=$\frac{3\sqrt{3}+3\sqrt{7}}{8}$.

點評 本題主要考查了一元二次方程的解法,正弦定理,同角三角函數(shù)基本關系式,兩角和的正弦函數(shù)公式,三角形面積公式在解三角形中的應用,考查了轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.要得到函數(shù)f(x)=cos2x的圖象,只需將函數(shù)g(x)=sin2x的圖象(  )
A.向左平移$\frac{1}{2}$個周期B.向右平移$\frac{1}{2}$個周期
C.向左平移$\frac{1}{4}$個周期D.向右平移$\frac{1}{4}$個周期

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)f(x)=$\frac{1}{ln(4x-3)}$的定義域為{x|x>$\frac{3}{4}$且x≠1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設命題p:函數(shù)f(x)=ln$\frac{{e}^{x}+1}{{e}^{-x}+1}$為奇函數(shù);命題q:?x0∈(0,2),x${\;}_{0}^{2}$>2${\;}^{{x}_{0}}$,則下列命題為假命題的是( 。
A.p∨qB.p∧(¬q)C.(¬p)∧qD.(¬p)∨(¬q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設a∈R,若復數(shù)z=$\frac{a-i}{3+i}$(i是虛數(shù)單位)的實部為2,則a的值為( 。
A.7B.-7C.5D.-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在三棱柱ABC-A1B1C1中,側棱與底面垂直,BC=CC1,當?shù)酌妗鰽1B1C1滿足條件A1C1⊥C1B1時,有AB1⊥BC1.(注:填上你認為正確的一種條件即可,不必考慮所有可能的情況).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知角α為第三象限角,試確定角2α,$\frac{α}{2}$分別是第幾象限角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若|z1|=|z2|=2,且|z1+z2|=2$\sqrt{3}$,則|z1-z2|=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知數(shù)列{an}的前n項和為Sn,Sn=$\frac{n^2}{2}+\frac{3n}{2}$,若數(shù)列{bn}滿足bn=an+2-an+$\frac{1}{{{a_{n+2}}•{a_n}}}$,則數(shù)列{bn}的前n項和為Tn=$2n+\frac{5}{12}-\frac{2n+5}{2(n+2)(n+3)}$.

查看答案和解析>>

同步練習冊答案