下列命題是真命題的是( 。
A、a>b是ac2>bc2的充要條件
B、a>1,b>1是ab>1的充分條件
C、?x0∈R,e x0≤0
D、若p∨q為真命題,則p∧q為真
考點(diǎn):復(fù)合命題的真假,特稱命題
專題:簡易邏輯
分析:利用復(fù)合命題的真假,充要條件以及特稱命題判斷結(jié)果即可.
解答: 解:對于A,a>b推不出ac2>bc2,說a>b是ac2>bc2的充要條件,不正確.
對于B,a>1,b>1⇒ab>1的充分條件,正確.
對于C,由指數(shù)函數(shù)的值域可知:?x0∈R,e x0≤0是錯誤的.
對于D,若p∨q為真命題,則p∧q為真,有復(fù)合命題的真假判斷,D不正確.
故選:B.
點(diǎn)評:本題考查命題的真假的判斷與應(yīng)用,充要條件以及特稱命題的判斷.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

記等差數(shù)列{an}的前n項和為Sn,利用倒序求和的方法得Sn=
n(a1+an)
2
;類似地,記等比數(shù)列{bn}的前n項積為Tn,且bn>0(n∈N*),類比等差數(shù)列求和的方法,可將Tn表示成關(guān)于首項b1,末項bn與項數(shù)n的關(guān)系式為(  )
A、
(b1bn)n
B、
nb1bn
2
C、
nb1bn
D、
nb1bn
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列推理是歸納推理的是( 。
A、A,B為定點(diǎn),動點(diǎn)P滿足|PA|+|PB|=2a>|AB|,則P點(diǎn)的軌跡為橢圓
B、由a1=1,an=3n-1,求出S1,S2,S3,猜想出數(shù)列的前n項和Sn的表達(dá)式
C、由圓x2+y2=r2的面積πr2,猜想出橢圓
x2
a2
+
y2
b2
=1的面積S=πab
D、以上均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間四面體SABC中,SC⊥AB,AC⊥SC,且△ABC是銳角三角形,那么必有( 。
A、平面SAC⊥平面SCB
B、平面SAB⊥平面ABC
C、平面SCB⊥平面ABC
D、平面SAC⊥平面SAB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一條直線與一個平面垂直的條件是(  )
A、垂直于平面內(nèi)的一條直線
B、垂直于平面內(nèi)的兩條直線
C、垂直于平面內(nèi)的無數(shù)條直線
D、垂直于平面內(nèi)的兩條相交直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l⊥平面α,直線m⊆平面β,給出下列命題,其中正確的是( 。
①α∥β⇒l⊥m   
②α⊥β⇒l∥m   
③l∥m⇒α⊥β   
④l⊥m⇒α∥β
A、②④B、②③④
C、①③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正項數(shù)列{an}滿足:an2-(2n-1)an-2n=0.
(1)求數(shù)列{an}的通項公式an;
(2)令bn=
1
(n+1)an
,求數(shù)列{bn}的前n項和Tn.并求使Tn
5
11
成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
1
3
x3+x2+(m2-1)x
,(x∈R),其中m>0
(Ⅰ)當(dāng)m=2時,求曲線y=f(x)在點(diǎn)(3,f(3))處的切線的方程;
(Ⅱ)若f(x)在(
3
2
,+∞
)上存在單調(diào)遞增區(qū)間,求m的取值范圍
(Ⅲ)已知函數(shù)f(x)有三個互不相同的零點(diǎn)0,x1,x2且x1<x2,若對任意的x∈[x1,x2],f(x)>f(1)恒成立.求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知|
a
|+2|
b
|=3,
a
b
的夾角為60°,
c
=5
a
+3
b
,
d
=3
a
+k
b
,當(dāng)實數(shù)k為何值時
c
d

(2)不共線向量
a
b
的夾角為小于120°的角,且|
a
|=1,|
b
|=2,已知向量
c
=
a
+2
b
,求|
c
|的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案