【題目】已知拋物線: 的焦點(diǎn)也是橢圓: ()的一個(gè)焦點(diǎn), 與的公共弦長(zhǎng)為.
(Ⅰ)求的方程
(Ⅱ)過點(diǎn)的直線與相交于, 兩點(diǎn),與相交于, 兩點(diǎn),且, 同向.若求直線的斜率;
【答案】(1)(2)
【解析】試題分析:(Ⅰ)由拋物線與橢圓共焦點(diǎn)可得,再由公共弦長(zhǎng)可得公共點(diǎn)坐標(biāo)代入與前式聯(lián)立可得的值;(Ⅱ)設(shè), , , ,設(shè)直線的斜率為,則直線的方程為
與雙曲線聯(lián)立,利用韋達(dá)定理,將轉(zhuǎn)化為關(guān)于的方程,解可得直線的斜率. 試題解析:解:(1)由拋物線: 的焦點(diǎn),所以,又由與的公共弦長(zhǎng)為,得公共點(diǎn)坐標(biāo),所以,解得, 得:
(2)設(shè), , ,
由,得,所以①
設(shè)直線的斜率為,則直線的方程為
由得, , ②
由得, , ③
將②③代入①,解得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)單位有職工80人,其中業(yè)務(wù)人員56人,管理人員8人,服務(wù)人員16人,為了解職工的某種情況,決定采取分層抽樣的方法。抽取一個(gè)容量為10的樣本,每個(gè)管理人員被抽到的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),且的導(dǎo)數(shù)為.
(Ⅰ)若是定義域內(nèi)的增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)若方程有3個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一盒中裝有各色球12只,其中5個(gè)紅球,4個(gè)黑球,2個(gè)白球,1個(gè)綠球;從中隨機(jī)取出1球.求:
(1)取出的1球是紅球或黑球的概率;
(2)取出的1球是紅球或黑球或白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)生趙敏利用寒假參加社會(huì)實(shí)踐,對(duì)機(jī)械銷售公司7月份至12月份銷售某種機(jī)械配件的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,銷售單價(jià)和銷售量之間的一組數(shù)據(jù)如下表所示:
月份 | 7 | 8 | 9 | 10 | 11 | 12 |
銷售單價(jià)(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
銷售量(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(1)根據(jù)7至11月份的數(shù)據(jù),求出關(guān)于的回歸直線方程;
(2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過0.5元,則認(rèn)為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?
(3)預(yù)計(jì)在今后的銷售中,銷售量與銷售單價(jià)仍然服從(1)中的關(guān)系,若該種機(jī)器配件的成本是2.5元/件,那么該配件的銷售單價(jià)應(yīng)定為多少元才能獲得最大利潤(rùn)?(注:利潤(rùn)=銷售收入-成本).
參考公式:回歸直線方程,其中,參考數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,AB=2,C是⊙O上一點(diǎn),且AC=BC,PC與⊙O所在的平面成45°角,E是PC中點(diǎn).F為PB中點(diǎn).
(1)求證:EF∥面ABC;
(2)求證:EF⊥面PAC;
(3)求三棱錐B﹣PAC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 滿足3an﹣2Sn﹣1=0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)bn= ,數(shù)列{bn}的前n項(xiàng)和為Tn , 求f(n)= (n∈N+)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),直線.
(1)若直線與曲線相切,求切點(diǎn)橫坐標(biāo)的值;
(2)若函數(shù),求證: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com