一個(gè)均勻的正四面體面上分別涂有1,2,3,4四個(gè)數(shù)字,現(xiàn)隨機(jī)投擲兩次,正四面體面朝下的數(shù)字分別為
(1)記,求的概率;
(2)若方程至少有一根,就稱該方程為“漂亮方程”,求方程為“漂亮方程”的概率.

(1) ;(2)

解析試題分析:(1)由于要將均勻的面上分別涂有1、2、3、4四個(gè)數(shù)字的正四面體隨機(jī)投擲兩次,故基本事件共有4×4=16個(gè),然后求出時(shí),基本事件的個(gè)數(shù),代入古典概型公式即可得到結(jié)果;(2)分類討論方程根分別為1,2,3,5時(shí),基本事件的個(gè)數(shù),然后代入古典概型公式即可得到結(jié)果.
(1)因?yàn)槭峭稊S兩次,因此基本事件共有16個(gè),
當(dāng)時(shí),的所有取值為(1,3),(3,1),
所以
(2)①若方程一根為,則,即,不成立.
②若方程一根為,則,即,所以
③若方程一根為,則,即,所以
④若方程一根為,則,即,所以
綜合①②③④知,的所有可能取值為(1,2),(2,3), (3,4),所以,“漂亮方程”共有3個(gè),方程為“漂亮方程”的概率為
考點(diǎn):1.創(chuàng)新能力;2.古典概型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽,假設(shè)每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨(dú)立.
求甲在4局以內(nèi)(含4局)贏得比賽的概率;
為比賽決出勝負(fù)時(shí)的總局?jǐn)?shù),求的分布列和均值(數(shù)學(xué)期望).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖.空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機(jī)選擇3月1日至3月13日中的某一天到達(dá)該市,并停留2天.
(1)求此人到達(dá)當(dāng)日空氣質(zhì)量?jī)?yōu)良的概率;
(2)求此人在該市停留期間只有1天空氣重度污染的概率;
(3)由圖判斷從哪天開(kāi)始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某學(xué)校在一次運(yùn)動(dòng)會(huì)上,將要進(jìn)行甲、乙兩名同學(xué)的乒乓球冠亞軍決賽,比賽實(shí)行三局兩勝制.已知每局比賽中,若甲先發(fā)球,其獲勝的概率為,否則其獲勝的概率為.
(1)若在第一局比賽中采用擲硬幣的方式?jīng)Q定誰(shuí)先發(fā)球,試求甲在此局獲勝的概率;
(2)若第一局由乙先發(fā)球,以后每局由負(fù)方先發(fā)球.規(guī)定勝一局記2分,負(fù)一局記0分,記為比賽結(jié)束時(shí)甲的得分,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙兩名運(yùn)動(dòng)員參加“選拔測(cè)試賽”,在相同條件下,兩人5次測(cè)試的成績(jī)(單位:分)記錄如下:
甲  86   77   92   72   78
乙  78   82   88   82   95
(1)用莖葉圖表示這兩組數(shù)據(jù);.
(2)現(xiàn)要從中選派一名運(yùn)動(dòng)員參加比賽,你認(rèn)為選派誰(shuí)參賽更好?說(shuō)明理由(不用計(jì)算);
(3)若將頻率視為概率,對(duì)運(yùn)動(dòng)員甲在今后三次測(cè)試成績(jī)進(jìn)行預(yù)測(cè),記這三次成績(jī)高于分的次數(shù)為,求的分布列和數(shù)學(xué)期望..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一袋中裝有4個(gè)形狀、大小完全相同的球,其中黑球2個(gè),白球2個(gè),假設(shè)每個(gè)小球從袋中被取出的可能性相同,首相由甲取出2個(gè)球,并不在將他們?cè),然后由乙取出剩下?個(gè)球.規(guī)定取出一個(gè)黑球記1分,取出一個(gè)白球記2分,取出球的總積分多者獲勝.
(1)求甲、乙平局的概率;
(2)假設(shè)可以選擇取球的先后順序,應(yīng)選擇先取,還是后取,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某飲料公司招聘了一名員工,現(xiàn)對(duì)其進(jìn)行一項(xiàng)測(cè)試,以便確定工資級(jí)別.公司準(zhǔn)備了兩種不同的飲料共8杯,其顏色完全相同,并且其中4杯為A飲料,另外4杯為B飲料,公司要求此員工一一品嘗后,從8杯飲料中選出4杯A飲料,若4杯都選對(duì),則月工資定為3500元;若4杯選對(duì)3杯,則月工資定為2 800元,否則月工資定為2100元,令X表示此人選對(duì)A飲料的杯數(shù),假設(shè)此人對(duì)A和B兩種飲料沒(méi)有鑒別能力.
(1)求X的分布列:
(2)求此員工月工資的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知復(fù)數(shù)z=x+yi(x,y∈R)在復(fù)平面上對(duì)應(yīng)的點(diǎn)為M.
(1)設(shè)集合P={-4,-3,-2,0},Q={0,1,2},從集合P中隨機(jī)取一個(gè)數(shù)作為x,從集合Q中隨機(jī)取一個(gè)數(shù)作為y,求復(fù)數(shù)z為純虛數(shù)的概率.
(2)設(shè)x∈[0,3],y∈[0,4],求點(diǎn)M落在不等式組:
所表示的平面區(qū)域內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某聯(lián)歡晚會(huì)舉行抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為,中獎(jiǎng)可以獲得2分;方案乙的中獎(jiǎng)率為,中獎(jiǎng)可以得3分;未中獎(jiǎng)則不得分.每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,晚會(huì)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品.若小明選擇方案甲抽獎(jiǎng),小紅選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為X,求X≤3的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案