在四棱錐P-ABCD中,側棱PD⊥底面ABCD,底面ABCD是正方形,若PD=DA,M是PC的中點.
(Ⅰ)證明:PA∥平面BDM
(Ⅱ)若PD=
2
,求點C到平面BDM的距離.
考點:點、線、面間的距離計算,直線與平面平行的判定
專題:綜合題,空間位置關系與距離,空間角
分析:(Ⅰ)連結AC,設AC與BD交于O點,連結MO,易證MO為△PAC的中位線,從而OM∥PA,再利用線面平行的判斷定理即可證得PA∥平面BDM;
(Ⅱ)利用等體積轉換,即可求點C到平面BDM的距離.
解答: (Ⅰ)證明:連結AC,設AC與BD交于O點,連結MO.
∵底面ABCD是正方形,
∴O為AC的中點,又M為PC的中點,
∴OM∥PA,
∵OM?平面BDE,PA?平面BDM,
∴PA∥平面BDM.…(6分)
(Ⅱ)解:設點C到平面BDM的距離為h,PD=DA=2,則
△BDM中,BD=2
2
,DM=
2
,BM=
6

∴∠DMB=90°,
∴S△BDM=
1
2
2
6
=
3

由VM-BDC=VC-BDM,可得
1
3
1
2
•2•2•1
=
1
3
3
h,
∴h=
2
3
3

即點C到平面BDM的距離為
2
3
3
點評:本題考查直線與平面平行的判定,考查點C到平面BDM的距離,考查推理證明的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列an=
8n
(2n-1)2×(2n+1)2
(n∈N*),其前n項和為Sn.經計算得:S1=
8
9
,S2=
24
25
,S3=
48
49
,S4=
80
81

(Ⅰ)觀察上述結果,猜想計算Sn的公式;
(Ⅱ)用數(shù)學歸納法證明所提猜想.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足:a1=2,a2=8,an+2=(2+i2n)an+1+i2n,(i是虛數(shù)單位,n=1,2,3,…).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{bn}滿足bn=na2n,n∈N+,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知正方體ABCD-A1B1C1D1的棱長為2,M為正方形AA1D1D的中心,N為棱AB的中點.
(Ⅰ)求證:MN∥平面BB1D1D;
(Ⅱ)求四棱錐N-BB1D1D的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知多面體EABCDF的底面ABCD是邊長為2的正方形,EA⊥底面ABCD,F(xiàn)D∥EA,且FD=
1
2
EA=1.
(Ⅰ)求多面體EABCDF的體積;
(Ⅱ)求直線EB與平面ECF所成角的正弦值;
(Ⅲ)記線段BC的中點為K,在平面ABCD內過點K作一條直線與平面ECF平行,要求保留作圖痕跡,但不要求證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2px(p>0)的焦點為F,點P是拋物線上的一點,且縱坐標為4,|PF|=4.
(1)求拋物線的方程;
(2)設直線l與拋物線交于A,B兩點,且∠APB的角平分線與x軸垂直,求△PAB面積最大時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱柱ABC-A1B1 C1中,側棱AA1⊥平面ABC,AB=BC=AA1=2,AC=2
2
,E,F(xiàn)分別是A1B,BC的中點.
(Ⅰ)證明:EF∥平面A AlClC;
(Ⅱ)證明:平面A1ABB1⊥平面BEC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
1
2
,短軸的兩個端點分別為B1、B2,焦點為F1、F2,四邊形F1B1F2B2的內切圓半徑為
3
2

(1)求橢圓C的方程;
(2)過左焦F1點的直線交橢圓于M、N兩點,交直線x=-4于點P,設
PM
MF1
PN
NF2
,試證λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱柱ABC-A1B1C1的側棱AA1⊥平面ABC,△ABC為等邊三角形,側面AA1C1C是正方形,E是A1B的中點,F(xiàn)是棱CC1上的點.
(1)若F是棱CC1中點時,求證:AE⊥平面A1FB;
(2)當VE-ABF=9
3
時,求正方形AA1C1C的邊長.

查看答案和解析>>

同步練習冊答案