已知m,n為正整數(shù),
(Ⅰ)證明:當(dāng)x>-1時,(1+x)m≥1+mx;
(Ⅱ)對于n≥6,已知(1-
1
n+3
n
1
2
,求證:
n
k=1
(1-
k
n+3
n<1-(
1
2
n
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:點列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(Ⅰ)用數(shù)學(xué)歸納法證明,
(Ⅱ)利用(Ⅰ)的結(jié)論,得(1-
1
n+3
)m≥1-
m
n+3
>0
,問題于是得以證明.
解答: 證明(Ⅰ):用數(shù)學(xué)歸納法證明:
(。┊(dāng)m=1時,原不等式成立;當(dāng)m=2時,左邊=1+2x+x2,右邊=1+2x,
因為x2≥0,所以左邊≥右邊,原不等式成立;
(ⅱ)假設(shè)當(dāng)m=k時,不等式成立,即(1+x)k≥1+kx,則當(dāng)m=k+1時,
∵x>-1,
∴1+x>0,
于是在不等式(1+x)k≥1+kx兩邊同乘以1+x得
(1+x)k•(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,
所以(1+x)k+1≥1+(k+1)x.
即當(dāng)m=k+1時,不等式也成立.
綜合(。áⅲ┲瑢σ磺姓麛(shù)m,不等式都成立.
(Ⅱ)證:當(dāng)n≥6,m≤n時,由(Ⅰ)得(1-
1
n+3
)m≥1-
m
n+3
>0

于是(1-
m
n+3
)n≤(1-
1
n+3
)nm
=[(1-
1
n+3
)
n
]m<(
1
2
)m
,m=1,2,…,n.
n
k=1
(1-
k
n+3
)
n
n
k=1
(
1
2
)
k
=1-(
1
2
)n
點評:本題主要考查了數(shù)學(xué)歸納法,以及不等式的證明,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)在一個周期內(nèi)的部分函數(shù)圖象如圖所示.
(I)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,Sn=kn(n+1)-n(k∈R),公差d為2.
(1)求an與k;
(2)若數(shù)列{bn}滿足b1=2,bn-bn-1=n•2 an(n≥2),求bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=|-x2-5x-6|,作出函數(shù)圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)的焦點為F1、F2,離心率為
2
2
,通徑長(過焦點且垂直于長軸的直線與橢圓相交線段的長)為2
2

(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l與橢圓相交于M(x1,y1)、N(x2,y2)兩點,△OMN面積為2
2
,試問x12+x22能否為定值?如果為定值,求出該值;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且Sn=2an-4,數(shù)列{bn}的首項為6,(
bn
,0)是雙曲線anx2-an-1y2=anan-1的一個焦點.
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)設(shè)雙曲線anx2-an-1y2=anan-1的離心率為en(n≥2),求證:不等式
n
k=1
9(k+1)
k2bkbk+1
1
4
+log9en
對任意整數(shù)n≥2恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓M的對稱軸為坐標(biāo)軸,且拋物線y2=4x的焦點F是橢圓M的一個焦點,以F為圓心,以橢圓M的短半軸長為半徑的圓與直線y=
2
4
(x+2)相切
(1)求橢圓M的方程;
(2)已知直線l:y=kx+m與橢圓M交于A,B兩點,且橢圓上的點P滿足
OP
=
OA
+
OB
.證明:四邊形OAPB的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用分析法證明不等式:
2
-
6
3
-
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x+
1
x-2
,g(x)=x2-
1
x-2
,則f(x)+g(x)=
 

查看答案和解析>>

同步練習(xí)冊答案