【題目】隨著經(jīng)濟的發(fā)展,轎車已成為人們上班代步的一種重要工具.現(xiàn)將某人三年以來每周開車從家到公司的時間之和統(tǒng)計如圖所示.

1)求此人這三年以來每周開車從家到公司的時間之和在(時)內的頻率;

2)求此人這三年以來每周開車從家到公司的時間之和的平均數(shù)(每組取該組的中間值作代表);

3)以頻率估計概率,記此人在接下來的四周內每周開車從家到公司的時間之和在(時)內的周數(shù)為,求的分布列以及數(shù)學期望.

【答案】1;(2;(3)分布列見解析;數(shù)學期望.

【解析】

1)用減去頻率直方圖中位于區(qū)間的矩形的面積之和可得出結果;

2)將各區(qū)間的中點值乘以對應的頻率,再將所得的積全部相加即可得出所求平均數(shù);

3)由題意可知,利用二項分布可得出隨機變量的概率分布列,并利用二項分布的均值可計算出隨機變量的數(shù)學期望.

1)依題意,此人這三年以來每周開車從家到公司的時間之和在(時)內的頻率為;

2)所求平均數(shù)為(時);

3)依題意,.,,,.

的分布列為

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,、是兩個小區(qū)所在地,、到一條公路的垂直距離分別為,,兩端之間的距離為.

1)某移動公司將在之間找一點,在處建造一個信號塔,使得的張角與、的張角相等,試確定點的位置.

2)環(huán)保部門將在之間找一點,在處建造一個垃圾處理廠,使得、所張角最大,試確定點的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐P—ABC中,PB平面ABC,ABBCAB=PB=2,BC=2E、G分別為PCPA的中點.

1)求證:平面BCG平面PAC;

2)假設在線段AC上存在一點N,使PNBE,求的值;

3)在(2)的條件下,求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)中國生態(tài)環(huán)境部公布的2017年、2018年長江流域水質情況監(jiān)測數(shù)據(jù),得到如下餅圖:

則下列說法錯誤的是(

A.2018年的水質情況好于2017年的水質情況

B.2018年與2017年相比較,Ⅰ、Ⅱ類水質的占比明顯增加

C.2018年與2017年相比較,占比減小幅度最大的是Ⅳ類水質

D.2018年Ⅰ、Ⅱ類水質的占比超過

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數(shù)學中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為),M為該曲線上的任意一點.

1)當時,求M點的極坐標;

2)將射線OM繞原點O逆時針旋轉與該曲線相交于點N,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由我國引領的5G時代已經(jīng)到來,5G的發(fā)展將直接帶動包括運營、制造、服務在內的通信行業(yè)整體的快速發(fā)展,進而對增長產生直接貢獻,并通過產業(yè)間的關聯(lián)效應和波及效應,間接帶動國民經(jīng)濟各行業(yè)的發(fā)展,創(chuàng)造岀更多的經(jīng)濟增加值.如圖是某單位結合近年數(shù)據(jù),對今后幾年的5G經(jīng)濟產出所做的預測.結合下圖,下列說法正確的是(

A.5G的發(fā)展帶動今后幾年的總經(jīng)濟產出逐年增加

B.設備制造商的經(jīng)濟產出前期增長較快,后期放緩

C.設備制造商在各年的總經(jīng)濟產出中一直處于領先地位

D.信息服務商與運營商的經(jīng)濟產出的差距有逐步拉大的趨勢

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓為橢圓的右焦點,為橢圓上一點,的離心率

1)求橢圓的標準方程;

2)斜率為的直線過點交橢圓兩點,線段的中垂線交軸于點,試探究是否為定值,如果是,請求出該定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班有甲乙兩個物理科代表,從若干次物理考試中,隨機抽取八次成績的莖葉圖(其中莖為成績十位數(shù)字,葉為成績的個位數(shù)字)如下:

1)分別求甲、乙兩個科代表成績的中位數(shù);

2)分別求甲、乙兩個科代表成績的平均數(shù),并說明哪個科代表的成績更穩(wěn)定;

3)將頻率視為概率,對乙科代表今后三次考試的成績進行預測,記這三次成績中不低于90分的次數(shù)為,求的分布列及均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義域是上的連續(xù)函數(shù)圖像的兩個端點為、,是圖像上任意一點,過點作垂直于軸的直線交線段于點(點與點可以重合),我們稱的最大值為該函數(shù)的曲徑,下列定義域是上的函數(shù)中,曲徑最小的是(

A.B.

C.D.

查看答案和解析>>

同步練習冊答案