【題目】已知橢圓C:.
(1)求橢圓C的離心率;
(2)設(shè)分別為橢圓C的左右頂點(diǎn),點(diǎn)P在橢圓C上,直線AP,BP分別與直線相交于點(diǎn)M,N.當(dāng)點(diǎn)P運(yùn)動時,以M,N為直徑的圓是否經(jīng)過軸上的定點(diǎn)?試證明你的結(jié)論.
【答案】(1)(2)以為直徑的圓經(jīng)過軸上的定點(diǎn)和,證明見解析
【解析】
(1)先將轉(zhuǎn)化為,根據(jù)橢圓的性質(zhì)得到,即可求出離心率.
(2)根據(jù)橢圓方程求出,設(shè),則①,分別求出直線和的方程,再分別與相交于點(diǎn) 和,設(shè)以為直徑的圓經(jīng)過軸上的定點(diǎn),則,即得②,將①代入②得
解得或,得出為直徑的圓是過定點(diǎn)和.
解:(1)由得,
那么
所以
解得,所以離心率
(2)由題可知,
設(shè),則①
直線的方程:
令,得,從而點(diǎn)坐標(biāo)為
直線的方程:
令,得,從而點(diǎn)坐標(biāo)為
設(shè)以為直徑的圓經(jīng)過軸上的定點(diǎn),則
由得②
由①式得,代入②得
解得或
所以為直徑的圓經(jīng)過軸上的定點(diǎn)和.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為.
(1)求直線的直角坐標(biāo)方程與曲線的普通方程;
(2)若是曲線上的動點(diǎn),為線段的中點(diǎn),求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校運(yùn)動會的立定跳遠(yuǎn)和30秒跳繩兩個單項比賽分成預(yù)賽和決賽兩個階段.下表為10名學(xué)生的預(yù)賽成績,其中有三個數(shù)據(jù)模糊.
學(xué)生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳遠(yuǎn)(單位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
30秒跳繩(單位:次) | 63 | a | 75 | 60 | 63 | 72 | 70 | a1 | b | 65 |
在這10名學(xué)生中,進(jìn)入立定跳遠(yuǎn)決賽的有8人,同時進(jìn)入立定跳遠(yuǎn)決賽和30秒跳繩決賽的有6人,則
(A)2號學(xué)生進(jìn)入30秒跳繩決賽
(B)5號學(xué)生進(jìn)入30秒跳繩決賽
(C)8號學(xué)生進(jìn)入30秒跳繩決賽
(D)9號學(xué)生進(jìn)入30秒跳繩決賽
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為常數(shù),函數(shù),給出以下結(jié)論:
(1)若,則存在唯一零點(diǎn)
(2)若,則
(3)若有兩個極值點(diǎn),則
其中正確結(jié)論的個數(shù)是( )
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,是由矩形,和組成的一個平面圖形,其中,,將其沿折起使得重合,連接如圖②.
(1)證明:平面平面;
(2)若為線段中點(diǎn),求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a≤8.函數(shù)f(x)=a1nx﹣x2+5,g(x)=2x+
(1)若f(x)的極大值為5,求a的值
(2)若關(guān)于x的不等式f(x)≤g(x)在區(qū)間[1,+∞)上恒成立,求a的取值范圍,(1n2≈0.7)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com