解方程
C
x+1
13
=
C
2x-3
13
,則x=
 
考點:組合及組合數(shù)公式
專題:排列組合
分析:直接利用組合數(shù)公式的性質(zhì),求解即可.
解答: 解:方程
C
x+1
13
=
C
2x-3
13
,
∴x+1=2x-3或x+1+2x+3=13,
解得x=4或5.
故答案為:4或5.
點評:本題考查排列組合數(shù)公式的應用,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1+i)4+(1-i)4=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某種平面分形圖如下圖所示,一級分形圖是由一點出發(fā)的三條線段,長度均為1,兩兩夾角為120°;二級分形圖是在一級分形圖的每條線段的末端出發(fā)再生成兩條長度為原來
1
3
的線段,且這兩條線段與原線段兩兩夾角為120°;依此規(guī)律得到n級分形圖.

(I)n級分形圖中共有
 
條線段;
(Ⅱ)n級分形圖中所有線段長度之和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明1+
1
2
+
1
3
+…+
1
2n-1
<n(n>1,n∈N*),在驗證n=2成立時,左式是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
1
3
x3+
1
2
ax2+(a-1)x+1在區(qū)間(-1,1)上是減函數(shù),在區(qū)間(2,3)是增函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從1,2,3,4,5,6中任取3個數(shù)字組成無重復數(shù)字的三位數(shù),其中若同時含有1和3時,3必須放在1的前面,若含有1或3其中之一時,則應該將其排在其他數(shù)字的前面,這樣的不同三位數(shù)的個數(shù)為
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=ax+1-2(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中m、n>0,則
1
m
+
2
n
的最小值為( 。
A、3
B、3+2
2
C、2+2
2
D、2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出如圖所示函數(shù)圖象

其中可能為函數(shù)f(x)=ax3+bx2+cx+d(a≠0)的圖象是(  )
A、①②B、②④C、①③D、③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,若a1=3,a2=9,則數(shù)列{an}的前4項和為( 。
A、81B、120
C、168D、192

查看答案和解析>>

同步練習冊答案