【題目】已知,正方體ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn)分別為D1C1,C1B1的中點(diǎn),
AC∩BD=P,A1C1∩EF=Q.求證:
(1)D,B,E,F(xiàn)四點(diǎn)共面.
(2)若A1C交平面BDEF于點(diǎn)R,則P,Q,R三點(diǎn)共線(xiàn).
【答案】詳見(jiàn)解析
【解析】試題分析:(1)利用EF∥BD確定平面即可;(2)利用公理2說(shuō)明三點(diǎn)在兩個(gè)平面的交線(xiàn)上即可.
試題解析:
(1)連接B1D1.因?yàn)镋,F(xiàn)分別為D1C1,C1B1的中點(diǎn),所以EF∥B1D1,又因?yàn)锽1D1∥BD,
所以EF∥BD,所以EF與BD共面,
所以E,F(xiàn),B,D四點(diǎn)共面.
(2)因?yàn)锳C∩BD=P,所以P∈平面AA1C1C∩平面BDEF.
同理,Q∈平面AA1C1C∩平面BDEF,
因?yàn)锳1C∩平面DBFE=R,
所以R∈平面AA1C1C∩平面BDEF,
所以P,Q,R三點(diǎn)共線(xiàn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)y=-x+5的傾斜角是直線(xiàn)l的傾斜角的大小的5倍,分別求滿(mǎn)足下列條件的直線(xiàn)l的方程.
(1)過(guò)點(diǎn)P(3,-4);
(2)在x軸上截距為-2;
(3)在y軸上截距為3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線(xiàn)l1的參數(shù)方程為 ,(t為參數(shù)),直線(xiàn)l2的參數(shù)方程為 ,(m為參數(shù)).設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線(xiàn)C.
(1)寫(xiě)出C的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ)﹣ =0,M為l3與C的交點(diǎn),求M的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}的公差d>0,且a1>0,記Tn= + ++ .
(1)用a1、d分別表示T1、T2、T3 , 并猜想Tn;
(2)用數(shù)學(xué)歸納法證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高中為了解高中學(xué)生的性別和喜歡打籃球是否有關(guān),對(duì)50名高中學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表:
喜歡打籃球 | 不喜歡打籃球 | 合計(jì) | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) |
已知在這50人中隨機(jī)抽取1人,抽到喜歡打籃球的學(xué)生的概率為
(Ⅰ)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;
(Ⅱ)判斷是否有99.5%的把握認(rèn)為喜歡打籃球與性別有關(guān)?
附:K2=
p(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA⊥平面ABC,AE⊥PB,AB⊥BC,AF⊥PC,PA=AB=BC.
(1)求證:平面AEF⊥平面PBC.
(2)求二面角P-BC-A的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)M(2,2),N(5,-2),點(diǎn)P在x軸上,分別求滿(mǎn)足下列條件的點(diǎn)P的坐標(biāo).
(1)∠MOP=∠OPN(O是坐標(biāo)原點(diǎn)).
(2)∠MPN是直角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn),M分別是AB,AD,AA1的中點(diǎn),又P,Q分別在線(xiàn)段A1B1,A1D1上,且A1P=A1Q=x,0<x<1,設(shè)平面MEF∩平面MPQ=l,則下列結(jié)論中不成立的是 ( )
A. l∥平面ABCD
B. l⊥AC
C. 平面MEF與平面MPQ不垂直
D. 當(dāng)x變化時(shí),l不是定直線(xiàn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xoy中,曲線(xiàn)C1: (t為參數(shù),t≠0),其中0≤α<π,在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C2:ρ=2sinθ,曲線(xiàn)C3:ρ=2 cosθ. (Ⅰ)求C2與C3交點(diǎn)的直角坐標(biāo);
(Ⅱ)若C2與C1相交于點(diǎn)A,C3與C1相交于點(diǎn)B,求|AB|的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com