已知向量p=(an,2n),q=(2n+1,-an+1),n∈N*,pq垂直,且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=log2an+1,求數(shù)列{an·bn}的前n項(xiàng)和Sn.
(1)2n-1(2)Sn=1+(n-1)2n
(1)∵向量pq垂直,
∴2nan+1-2n+1an=0,即2nan+1=2n+1an,
=2,∴{an}是以1為首項(xiàng),2為公比的等比數(shù)列,
an=2n-1.
(2)∵bn=log2an+1,∴bnn,∴an·bnn·2n-1,
Sn=1+2·2+3·22+4·23+…+n·2n-1,①
∴2Sn=1·2+2·22+3·23+4·24+…+n·2n,②
∴由①-②得,
Sn=1+2+22+23+24+…+2n-1n·2nn·2n=(1-n)2n-1,
Sn=1+(n-1)2n.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在數(shù)列中,,,設(shè)
(1)證明:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項(xiàng)和;
(3)若為數(shù)列的前項(xiàng)和,求不超過(guò)的最大的整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和滿足
(1)寫(xiě)出數(shù)列的前3項(xiàng);
(2)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在正項(xiàng)等比數(shù)列{an}中,Sn是其前n項(xiàng)和.若a1=1,a2a6=8,則S8=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

數(shù)列{an}為正項(xiàng)等比數(shù)列,若a2=1,且anan+1=6an-1(n∈N*,n≥2),則此數(shù)列的前4項(xiàng)和S4=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

公比為2的等比數(shù)列{an}的各項(xiàng)都是正數(shù),且a3a11=16,則log2a10=(  ).
A.4B.5
C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在正項(xiàng)等比數(shù)列{an}中,a5,a6a7=3.則滿足a1a2+…+an>a1a2an的最大正整數(shù)n的值為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)為正整數(shù),由數(shù)列分別求相鄰兩項(xiàng)的和,得到一個(gè)有項(xiàng)的新數(shù)列;1+2,2+3,3+4,即3,5,7,. 對(duì)這個(gè)新數(shù)列繼續(xù)上述操作,這樣得到一系列數(shù)列,最后一個(gè)數(shù)列只有一項(xiàng).⑴記原數(shù)列為第一個(gè)數(shù)列,則第三個(gè)數(shù)列的第2項(xiàng)是______⑵最后一個(gè)數(shù)列的項(xiàng)是___________.
(說(shuō)明:第一問(wèn):2分,第二問(wèn)3分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一個(gè)等比數(shù)列的第3項(xiàng)和第4項(xiàng)分別是12和18,則它的第2項(xiàng)為       .

查看答案和解析>>

同步練習(xí)冊(cè)答案