(本小題滿分10分)一艘輪船在航行中的燃料費(fèi)和它的速度的立方成正比,已知在速度為每小時(shí)10公里時(shí)的燃料費(fèi)是每小時(shí)6元,而其他與速度無關(guān)的費(fèi)用是每小時(shí)96元,問此輪船以何種速度航行時(shí),能使行駛每公里的費(fèi)用總和最?
解:設(shè)船速度為時(shí),燃料費(fèi)用為元,則
,可得,
,…………………………………4分
∴總費(fèi)用,
,令,…………………………………8分
當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,
當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,
∴當(dāng)時(shí),取得最小值,
∴此輪船以20公里/小時(shí)的速度使行駛每公里的費(fèi)用總和最。10分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題16分)函數(shù)的定義域?yàn)閧x| x ≠1},圖象過原點(diǎn),且
(1)試求函數(shù)的單調(diào)減區(qū)間;
(2)已知各項(xiàng)均為負(fù)數(shù)的數(shù)列前n項(xiàng)和為,滿足,
求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)),其中
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),求函數(shù)的極大值和極小值;
(Ⅲ)當(dāng), 時(shí),若不等式對(duì)任意的恒成立,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)有且僅有一個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍 (     )
A.[, ]B.[]C.(, )D.()

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)設(shè),求函數(shù)的極值;
(2)若,且當(dāng)時(shí),12a恒成立,試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知函數(shù).
(1)當(dāng)時(shí),求的值;
(2)當(dāng)時(shí),求的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線y=x2-3x上在點(diǎn)P處的切線平行于x軸,則P的坐標(biāo)為     (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于的方程有實(shí)根的充要條件是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),且在圖象上點(diǎn)處的切線在y軸上的截距小于0,則a的取值范圍是               (   )
A.(-1,1)B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案