(本題滿分14分理科做)已知函數(shù)的圖象經(jīng)過(guò)點(diǎn)和,記
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),若,求的最小值;
(Ⅲ)求使不等式對(duì)一切均成立的最大實(shí)數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2012屆江蘇省泰州中學(xué)高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(文科)(本題滿分14分)設(shè)函數(shù)f(x)=·,其中=(m,cos2x),=(1+sin2x,1),x∈R,且函數(shù)y=f(x)的圖象經(jīng)過(guò)點(diǎn)(,2).
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)求函數(shù)f(x)的最小值及此時(shí)x值的集合
(理科)(本題滿分14分)已知函數(shù)f(x)=ex-kx,x∈R
(Ⅰ)若k=e,試確定函數(shù)f(x)的單調(diào)區(qū)間
(Ⅱ)若k>0,且對(duì)于任意x∈R,f(|x|)>0恒成立,試確定實(shí)數(shù)k的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆四川省成都外國(guó)語(yǔ)學(xué)校高二下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,求實(shí)數(shù)k的取值范圍;
(文科(3)證明: .
(理科(3)證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(文科)(本題滿分14分)設(shè)函數(shù)f(x)=·,其中=(m,cos2x),=(1+sin2x,1),x∈R,且函數(shù)y=f(x)的圖象經(jīng)過(guò)點(diǎn)(,2).
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)求函數(shù)f(x)的最小值及此時(shí)x值的集合
(理科)(本題滿分14分)已知函數(shù)f(x)=ex-kx,x∈R
(Ⅰ)若k=e,試確定函數(shù)f(x)的單調(diào)區(qū)間
(Ⅱ)若k>0,且對(duì)于任意x∈R,f(|x|)>0恒成立,試確定實(shí)數(shù)k的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市黃浦區(qū)高三上學(xué)期期終基礎(chǔ)學(xué)業(yè)測(cè)評(píng)理科數(shù)學(xué)試卷 題型:解答題
(本題滿分14分)本題共有2個(gè)小題,第1小題滿分7分,第2小題滿分7分.
(理科)已知四棱錐的底面是直角梯形, ,,
側(cè)面為正三角形,,.如圖4所示.
(1) 證明: 平面;
(2) 求四棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com